请使用支持JavaScript的浏览器! 进口Avanti Polar试剂盒,血清清关 品牌试剂实验Avanti代理,4ME 16:0 PC Lipids蚂蚁淘商城
商品信息
联系客服
avanti polar lipids/4ME 16:0 PC/500mg/850356P-500mg
郑重提醒:
无质量问题不接受退换货,下单前请仔细核对信息。
下单后请及时联系客服核对商品价格,订单生效后再付款。
avanti polar lipids/4ME 16:0 PC/500mg/850356P-500mg
品牌 / 
Avanti Polar
货号 / 
850356P-500mg
美元价:
(友情提示:该价格仅为参考,欢迎联系客服询价!)
数    量:
免费咨询热线
4000-520-616

850356 | 4ME 16:0 PC

1,2-diphytanoyl-sn-glycero-3-phosphocholine

4ME 16:0 PC
Info

4ME 16:0 PC

1,2-diphytanoyl-sn-glycero-3-phosphocholine

Lipids containing diphytanoyl fatty acid chains have been used to produce stable planar lipid membranes (see References). Diphytanoyl phosphatidylcholine does not exhibit a detectable gel to liquid crystalline phase transition from -120°C to +120°C.

The list of Phosphatidylcholine products offered by Avanti is designed to provide compounds having a variety of physical properties. Products available include short chain (C3-C8 are water soluble and hygroscopic), saturated, multi-unsaturated and mixed acid PC"s. All of the products are purified by HPLC, and special precautions are taken to protect the products from oxidization and hydrolysis. Several of these products are manufactured under the current guidelines of Good Manufacturing Practice and are available for pharmaceutical use. If you have a requirement for a choline derivative not found on our list, please call us: custom synthesis is one of our specialties.

Data
Hygroscopic
No
Light Sensitive
No
Molecular Formula
C48H96NO8P
Percent Composition
C 68.13%, H 11.43%, N 1.66%, O 15.12%, P 3.66%
Purity
>99%
Stability
1 Years
Storage Temperature
-20°C
CAS Number
207131-40-6 CAS Registry Number is a Registered Trademark of the American Chemical Society
FormulaWeight
846.252
Exact Mass
845.687
Synonyms
<p>1,2-di-(3,7,11,15-tetramethylhexadecanoyl)-sn-glycero-3-phosphocholinePC(16:0(3me,7me,11me,15me)/16:0(3me,7me,11me,15me))</p>
Downloads
  • ChemDraw File
  • 3D Structure
  • Structure
  • Transition Temperature Of Diphytanoyl Pc
  • Safety Data Sheet
  • Safety Data Sheet
References

Knapp O, Maier E, Piselli C, Benz R, Hoxha C, Popoff MR. Central residues of the amphipathic β-hairpin loop control the properties of Clostridium perfringens epsilon-toxin channel. Biochim Biophys Acta Biomembr. 2020 Sep 1;1862(9):183364. doi: 10.1016/j.bbamem.2020.183364. Epub 2020 May 22. PMID: 32450142.

PubMed ID: 32450142

Jansen KB, Inns PG, Housden NG, Hopper JTS, Kaminska R, Lee S, Robinson CV, Bayley H, Kleanthous C. Bifurcated binding of the OmpF receptor underpins import of the bacteriocin colicin N into Escherichia coli. J Biol Chem. 2020 May 12:jbc.RA120.013508. doi: 10.1074/jbc.RA120.013508. Epub ahead of print. PMID: 32398259.

PubMed ID: 32398259

Soysa HSM, Aunkham A, Schulte A, Suginta W. Single-channel properties, sugar specificity, and role of chitoporin in adaptive survival of Vibrio cholerae type strain O1. J Biol Chem. 2020 May 14:jbc.RA120.012921. doi: 10.1074/jbc.RA120.012921. Epub ahead of print. PMID: 32409576.

PubMed ID: 32409576

Esteras N, Kundel F, Amodeo GF, Pavlov EV, Klenerman D, Abramov AY. Insoluble tau aggregates induce neuronal death through modification of membrane ion conductance, activation of voltage-gated calcium channels and NADPH oxidase. FEBS J. 2020 Apr 27. doi: 10.1111/febs.15340. Epub ahead of print. PMID: 32338825.

PubMed ID: 32338825

Bafna JA, Sans-Serramitjana E, Acosta-Gutiérrez S, Bodrenko IV, Hörömpöli D, Berscheid A, Brötz-Oesterhelt H, Winterhalter M, Ceccarelli M. Kanamycin Uptake into Escherichia coli Is Facilitated by OmpF and OmpC Porin Channels Located in the Outer Membrane. ACS Infect Dis. 2020 May 20. doi: 10.1021/acsinfecdis.0c00102. Epub ahead of print. PMID: 32369342.

PubMed ID: 32369342

Lei J, Huang Y, Zhong W, Xiao D, Zhou C. Early Monitoring Drug Resistant Mutation T790M with a Two-Dimensional Simultaneous Discrimination Nanopore Strategy. Anal Chem. 2020 Jun 8. doi: 10.1021/acs.analchem.0c00575. Epub ahead of print. PMID: 32452671.

PubMed ID: 32452671

Wei X, Ma D, Zhang Z, Wang LY, Gray JL, Zhang L, Zhu T, Wang X, Lenhart BJ, Yin Y, Wang Q, Liu C. N-Terminal Derivatization-Assisted Identification of Individual Amino Acids Using a Biological Nanopore Sensor. ACS Sens. 2020 May 26. doi: 10.1021/acssensors.0c00345. Epub ahead of print. PMID: 32403927.

PubMed ID: 32403927

Rosen CB, Bayley H, Rodriguez-Larrea D. Free-energy landscapes of membrane co-translocational protein unfolding. Commun Biol. 2020 Apr 3;3(1):160. doi: 10.1038/s42003-020-0841-4. PMID: 32246057; PMCID: PMC7125183.

PubMed ID: 32246057

Feng J, Martin-Baniandres P, Booth MJ, Veggiani G, Howarth M, Bayley H, Rodriguez-Larrea D. Transmembrane protein rotaxanes reveal kinetic traps in the refolding of translocated substrates. Commun Biol. 2020 Apr 3;3(1):159. doi: 10.1038/s42003-020-0840-5. PMID: 32246060; PMCID: PMC7125113.

PubMed ID: 32246060

Li SP, Zhang YC, Hu FZ, Sabaretnam T, Guillemin GJ, Zou AH. Application of N-methyl-D-aspartate receptor nanopore in screening ligand molecules. Bioelectrochemistry. 2020 Aug;134:107534. doi: 10.1016/j.bioelechem.2020.107534. Epub 2020 Apr 17. PMID: 32335354.

PubMed ID: 32335354

Wongsirojkul N, Shimokawa N, Opaprakasit P, Takagi M, Hamada T. Osmotic-Tension-Induced Membrane Lateral Organization. Langmuir. 2020 Mar 24;36(11):2937-2945. doi: 10.1021/acs.langmuir.9b03893. Epub 2020 Mar 16. PMID: 32175748.

PubMed ID: 32175748

Fischer S, Ückert AK, Landenberger M, Papatheodorou P, Hoffmann-Richter C, Mittler AK, Ziener U, Hägele M, Schwan C, Müller M, Kleger A, Benz R, Popoff MR, Aktories K, Barth H. Human peptide α-defensin-1 interferes with Clostridioides difficile toxins TcdA, TcdB, and CDT. FASEB J. 2020 Mar 19. doi: 10.1096/fj.201902816R. Epub ahead of print. PMID: 32190927.

PubMed ID: 32190927

Matsushita M, Shoji K, Takai N, Kawano R. Biological Nanopore Probe: Probing of Viscous Solutions in a Confined Nanospace. J Phys Chem B. 2020 Mar 26;124(12):2410-2416. doi: 10.1021/acs.jpcb.9b11096. Epub 2020 Feb 26. PMID: 32031807.

PubMed ID: 32031807

Sabirovas T, Valiūnienė A, Gabriunaite I, Valincius G. Mixed hybrid bilayer lipid membranes on mechanically polished titanium surface. Biochim Biophys Acta Biomembr. 2020 Feb 28;1862(6):183232. doi: 10.1016/j.bbamem.2020.183232. Epub ahead of print. PMID: 32119863.

PubMed ID: 32119863

Ramm F, Dondapati SK, Thoring L, Zemella A, Wüstenhagen DA, Frentzel H, Stech M, Kubick S. Mammalian cell-free protein expression promotes the functional characterization of the tripartite non-hemolytic enterotoxin from Bacillus cereus. Sci Rep. 2020 Feb 19;10(1):2887. doi: 10.1038/s41598-020-59634-8. PMID: 32076011; PMCID: PMC7031377.

PubMed ID: 32076011

Ji Z, Jordan M, Jayasinghe L, Guo P. Insertion of channel of phi29 DNA packaging motor into polymer membrane for high-throughput sensing. Nanomedicine. 2020 Feb 6;25:102170. doi: 10.1016/j.nano.2020.102170. Epub ahead of print. PMID: 32035271.

PubMed ID: 32035271

Yao F, Peng X, Su Z, Tian L, Guo Y, Kang XF. Crowding-Induced DNA Translocation through a Protein Nanopore. Anal Chem. 2020 Mar 3;92(5):3827-3833. doi: 10.1021/acs.analchem.9b05249. Epub 2020 Feb 20. PMID: 32048508.

PubMed ID: 32048508

Wongsirojkul N, Shimokawa N, Opaprakasit P, Takagi M, Hamada T. Osmotic-Tension-Induced Membrane Lateral Organization. Langmuir. 2020 Mar 24;36(11):2937-2945. doi: 10.1021/acs.langmuir.9b03893. Epub 2020 Mar 16. PMID: 32175748.

PubMed ID: 32175748

Hardenbrook NJ, Liu S, Zhou K, Ghosal K, Hong Zhou Z, Krantz BA. Atomic structures of anthrax toxin protective antigen channels bound to partially unfolded lethal and edema factors. Nat Commun. 2020 Feb 11;11(1):840. doi: 10.1038/s41467-020-14658-6. PMID: 32047164; PMCID: PMC7012834.

PubMed ID: 32047164

Das D, Bao H, Courtney KC, Wu L, Chapman ER. Resolving kinetic intermediates during the regulated assembly and disassembly of fusion pores. Nat Commun. 2020 Jan 13;11(1):231. doi: 10.1038/s41467-019-14072-7. PMID: 31932584; PMCID: PMC6957489.

PubMed ID: 31932584

Wang J, Li MY, Yang J, Wang YQ, Wu XY, Huang J, Ying YL, Long YT. Direct Quantification of Damaged Nucleotides in Oligonucleotides Using an Aerolysin Single Molecule Interface. ACS Cent Sci. 2020 Jan 22;6(1):76-82. doi: 10.1021/acscentsci.9b01129. Epub 2020 Jan 9. PMID: 31989027; PMCID: PMC6978832.

PubMed ID: 31989027

Vikraman D, Satheesan R, Kumar KS, Mahendran KR. Nanopore Passport Control for Substrate-Specific Translocation. ACS Nano. 2020 Jan 29:10.1021/acsnano.9b09408. doi: 10.1021/acsnano.9b09408. Epub ahead of print. PMID: 31976649.

PubMed ID: 31976649

Li J, Baxani DK, Jamieson WD, Xu W, Rocha VG, Barrow DA, Castell OK. Formation of Polarized, Functional Artificial Cells from Compartmentalized Droplet Networks and Nanomaterials, Using One-Step, Dual-Material 3D-Printed Microfluidics. Adv Sci (Weinh). 2019 Oct 24;7(1):1901719. doi: 10.1002/advs.201901719. PMID: 31921557; PMCID: PMC6947711.

PubMed ID: 31921557

Su Z, Juhaniewicz-Debinska J, Sek S, Lipkowski J. Water Structure in the Submembrane Region of a Floating Lipid Bilayer: The Effect of an Ion Channel Formation and the Channel Blocker. Langmuir. 2020 Jan 14;36(1):409-418. doi: 10.1021/acs.langmuir.9b03271. Epub 2019 Dec 23. PMID: 31815479.

PubMed ID: 31815479

Jiménez-Munguía I, Fedorov AK, Abdulaeva IA, Birin KP, Ermakov YA, Batishchev OV, Gorbunova YG, Sokolov VS. Lipid Membrane Adsorption Determines Photodynamic Efficiency of β-Imidazolyl-Substituted Porphyrins. Biomolecules. 2019 Dec 10;9(12):E853. doi: 10.3390/biom9120853. PMID: 31835568.

PubMed ID: 31835568

Fang Z, Liu L, Wang Y, Xi D, Zhang S. Unambiguous Discrimination of Multiple Protein Biomarkers by Nanopore Sensing with Double-Stranded DNA-Based Probes. Anal Chem. 2020 Jan 21;92(2):1730-1737. doi: 10.1021/acs.analchem.9b02965. Epub 2020 Jan 7. PMID: 31869203.

PubMed ID: 31869203

Snead WT, Zeno WF, Kago G, Perkins RW, Richter JB, Zhao C, Lafer EM, Stachowiak JC. BAR scaffolds drive membrane fission by crowding disordered domains. J Cell Biol. 2019 Feb 4;218(2):664-682. doi: 10.1083/jcb.201807119. Epub 2018 Nov 30. PMID: 30504247; PMCID: PMC6363457.

PubMed ID: 30504247

Cao J, Jia W, Zhang J, Xu X, Yan S, Wang Y, Zhang P, Chen HY, Huang S. Giant single molecule chemistry events observed from a tetrachloroaurate(III) embedded Mycobacterium smegmatis porin A nanopore. Nat Commun. 2019 Dec 11;10(1):5668. doi: 10.1038/s41467-019-13677-2.

PubMed ID: 31827098

Ouldali H, Sarthak K, Ensslen T, Piguet F, Manivet P, Pelta J, Behrends JC, Aksimentiev A, Oukhaled A. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nat Biotechnol. 2019 Dec 16. doi: 10.1038/s41587-019-0345-2. [Epub ahead of print]

PubMed ID: 31844293

Yamada T, Kamiya K, Osaki T, Takeuchi S. A pumpless solution exchange system for nanopore sensors. Biomicrofluidics. 2019 Nov 4;13(6):064104. doi: 10.1063/1.5123316. eCollection 2019 Nov.

PubMed ID: 31700563

Aminipour Z, Khorshid M, Keshvari H, Bonakdar S, Wagner P, Van der Bruggen B. Passive permeability assay of doxorubicin through model cell membranes under cancerous and normal membrane potential conditions. Eur J Pharm Biopharm. 2020 Jan;146:133-142. doi: 10.1016/j.ejpb.2019.10.011. Epub 2019 Nov 5.

PubMed ID: 31698041

Su Z, Wei Y, Kang XF. Simultaneous High-Resolution Detection of Bioenergetic Molecules using Biomimetic-Receptor Nanopore. Anal Chem. 2019 Dec 3;91(23):15255-15259. doi: 10.1021/acs.analchem.9b04268. Epub 2019 Nov 11.

PubMed ID: 31665602

Cao C, Cirauqui N, Marcaida MJ, Buglakova E, Duperrex A, Radenovic A, Dal Peraro M. Single-molecule sensing of peptides and nucleic acids by engineered aerolysin nanopores. Nat Commun. 2019 Oct 29;10(1):4918. doi: 10.1038/s41467-019-12690-9.

PubMed ID: 31664022

Diederichs T, Pugh G, Dorey A, Xing Y, Burns JR, Hung Nguyen Q, Tornow M, Tampé R, Howorka S. Synthetic protein-conductive membrane nanopores built with DNA. Nat Commun. 2019 Nov 4;10(1):5018. doi: 10.1038/s41467-019-12639-y.

PubMed ID: 31685824

Wang X, Agasid MT, Baker CA, Aspinwall CA. Surface Modification of Glass/PDMS Microfluidic Valve Assemblies Enhances Valve Electrical Resistance. ACS Appl Mater Interfaces. 2019 Sep 18;11(37):34463-34470. doi: 10.1021/acsami.9b12342. Epub 2019 Sep 9.

PubMed ID: 31496217

Restrepo-Pérez L, Huang G, Bohländer PR, Worp N, Eelkema R, Maglia G, Joo C, Dekker C. Resolving Chemical Modifications to a Single Amino Acid within a Peptide Using a Biological Nanopore. ACS Nano. 2019 Sep 19. doi: 10.1021/acsnano.9b05156. [Epub ahead of print]

PubMed ID: 31536327

Willems K, Ruić D, Biesemans A, Galenkamp NS, Van Dorpe P, Maglia G. Engineering and Modeling the Electrophoretic Trapping of a Single Protein Inside a Nanopore. ACS Nano. 2019 Aug 20. doi: 10.1021/acsnano.8b09137. [Epub ahead of print]

PubMed ID: 31403770

Wang H, Kasianowicz JJ, Robertson JWF, Poster DL, Ettedgui J. A comparison of ion channel current blockades caused by individual poly(ethylene glycol) molecules and polyoxometalate nanoclusters. Eur Phys J E Soft Matter. 2019 Jun 28;42(6):83. doi: 10.1140/epje/i2019-11838-3.

PubMed ID: 31250227

Baxter AM, Wittenberg NJ. Excitation of Fluorescent Lipid Probes Accelerates Supported Lipid Bilayer Formation via Photosensitized Lipid Oxidation. Langmuir. 2019 Sep 3;35(35):11542-11549. doi: 10.1021/acs.langmuir.9b01535. Epub 2019 Aug 22.

PubMed ID: 31411482

Hui Li, Shaoying Wang, Zhouxiang Ji, Congcong Xu, Lyudmila S. Shlyakhtenko, Peixuan Guo. Construction of RNA nanotubes. August 2019;8:1952-1958.


Megalathan A, Cox BD, Wilkerson PD, Kaur A, Sapkota K, Reiner JE, Dhakal S. Single-molecule analysis of i-motif within self-assembled DNA duplexes and nanocircles. Nucleic Acids Res. 2019 Jul 9. pii: gkz565. doi: 10.1093/nar/gkz565. [Epub ahead of print]

PubMed ID: 31287873

Su Z, Ho D, Merrill AR, Lipkowski J. In Situ Electrochemical and PM-IRRAS Studies of Colicin E1 Ion Channels in the Floating Bilayer Lipid Membrane. Langmuir. 2019 Jun 25;35(25):8452-8459. doi: 10.1021/acs.langmuir.9b01251. Epub 2019 Jun 13.

PubMed ID: 31194562

Liu YM, Fang XY, Fang F, Wu ZY. Investigation of hairpin DNA and chelerythrine interaction by a single bio-nanopore sensing interface. Analyst. 2019 Jul 7;144(13):4081-4085. doi: 10.1039/c9an00113a. Epub 2019 Jun 6.

PubMed ID: 31169284

Liu L, Fang Z, Zheng X, Xi D. Nanopore-Based Strategy for Sensing of Copper(II) Ion and Real-Time Monitoring of a Click Reaction. ACS Sens. 2019 May 24;4(5):1323-1328. doi: 10.1021/acssensors.9b00236. Epub 2019 May 10.

PubMed ID: 31050287

Tan S, Zhang L, Yu L, Xu L. Free-Standing Lipid Bilayers Based on Nanopore Array and Ion Channel Formation. J Nanosci Nanotechnol. 2019 Nov 1;19(11):7149-7155. doi: 10.1166/jnn.2019.16674.

PubMed ID: 31039869

Janilson J. S. Júnior, Thereza A. Soares, Laércio Pol-Fachin, Dijanah C. Machado, Victor H. Rusu, Juliana P. Aguiar, and Cláudio G. Rodrigues. Alpha-hemolysin nanopore allows discrimination of the microcystins variants. (Paper) RSC Adv., 2019, 9, 14683-14691. doi: 10.1039/C8RA10384D


Santos HJ, Imai K, Makiuchi T, Tomii K, Horton P, Nozawa A, Okada K, Tozawa Y, Nozaki T. Novel lineage-specific transmembrane β-barrel proteins in the endoplasmic reticulum of Entamoeba histolytica. FEBS J. 2019 May 2. doi: 10.1111/febs.14870. [Epub ahead of print]

PubMed ID: 31070654

Lee MT, Hung WC, Huang HW. Rhombohedral trap for studying molecular oligomerization in membranes: application to daptomycin. Soft Matter. 2019 May 29;15(21):4326-4333. doi: 10.1039/c9sm00323a.

PubMed ID: 31070654

Puthumadathil N, Jayasree P, Santhosh Kumar K, Nampoothiri KM, Bajaj H, Mahendran KR. Detecting the structural assembly pathway of human antimicrobial peptide pores at single-channel level. Biomater Sci. 2019 Jun 5. doi: 10.1039/c9bm00181f. [Epub ahead of print]

PubMed ID: 31165117

Vu T, Borgesi J, Soyring J, D"Alia M, Davidson SL, Shim J. Employing LiCl salt gradient in the wild-type α-hemolysin nanopore to slow down DNA translocation and detect methylated cytosine. Nanoscale. 2019 May 30;11(21):10536-10545. doi: 10.1039/c9nr00502a.

PubMed ID: 31116213

Ji Z, Guo P. Channel from bacterial virus T7 DNA packaging motor for the differentiation of peptides composed of a mixture of acidic and basic amino acids. Biomaterials. 2019 Sep;214:119222. doi: 10.1016/j.biomaterials.2019.119222. Epub 2019 May 21.

PubMed ID: 31158604

Wang K, Preisler SS, Zhang L, Cui Y, Missel JW, Grønberg C, Gotfryd K, Lindahl E, Andersson M, Calloe K, Egea PF, Klaerke DA, Pusch M, Pedersen PA, Zhou ZH, Gourdon P. Structure of the human ClC-1 chloride channel. PLoS Biol. 2019 Apr 25;17(4):e3000218. doi: 10.1371/journal.pbio.3000218. eCollection 2019 Apr.

PubMed ID: 31022181

Larimi MG, Mayse LA, Movileanu L. Interactions of a Polypeptide with a Protein Nanopore Under Crowding Conditions. ACS Nano. 2019 Apr 23;13(4):4469-4477. doi: 10.1021/acsnano.9b00008. Epub 2019 Apr 3.

PubMed ID: 30925041

Noakes MT, Brinkerhoff H, Laszlo AH, Derrington IM, Langford KW, Mount JW, Bowman JL, Baker KS, Doering KM, Tickman BI, Gundlach JH. Increasing the accuracy of nanopore DNA sequencing using a time-varying cross membrane voltage. Nat Biotechnol. 2019 Apr 22. doi: 10.1038/s41587-019-0096-0. [Epub ahead of print]

PubMed ID: 31011178

Khoury ME, Winterstein T, Weber W, Stein V, Schlaak HF, Thiel G. Photolithographic Fabrication of Micro Apertures in Dry Film Polymer Sheets for Channel Recordings in Planar Lipid Bilayers. J Membr Biol. 2019 Mar 12. doi: 10.1007/s00232-019-00062-9. [Epub ahead of print]

PubMed ID: 30863900

Zhao Y, Liu L, Tu Y, Wu HC. Investigating the effect of mono- and multivalent counterions on the conformation of poly(styrenesulfonic acid) by nanopores. Electrophoresis. 2019 Feb 27. doi: 10.1002/elps.201800539. [Epub ahead of print]

PubMed ID: 30811621

Wang J, Fertig N, Ying YL. Real-time monitoring β-lactam/β-lactamase inhibitor (BL/BLI) mixture towards the bacteria porin pathway at single molecule level. Anal Bioanal Chem. 2019 Mar 2. doi: 10.1007/s00216-019-01650-3. [Epub ahead of print]

PubMed ID: 30824965

Golla VK, Sans-Serramitjana E, Pothula KR, Benier L, Bafna JA, Winterhalter M, Kleinekathöfer U. Fosfomycin Permeation through the Outer Membrane Porin OmpF. Biophys J. 2019 Jan 22;116(2):258-269. doi: 10.1016/j.bpj.2018.12.002. Epub 2018 Dec 8.

PubMed ID: 30616836

Coker HLE, Cheetham MR, Kattnig DR, Wang YJ, Garcia-Manyes S, Wallace MI. Controlling Anomalous Diffusion in Lipid Membranes. Biophys J. 2019 Mar 19;116(6):1085-1094. doi: 10.1016/j.bpj.2018.12.024. Epub 2019 Jan 16.

PubMed ID: 30846364

Zhang L, Wang K, Klaerke DA, Calloe K, Lowrey L, Pedersen PA, Gourdon P, Gotfryd K. Purification of Functional Human TRP Channels Recombinantly Produced in Yeast. Cells. 2019 Feb 11;8(2). pii: E148. doi: 10.3390/cells8020148.

PubMed ID: 30754715

Schönrock M, Thiel G, Laube B. Coupling of a viral K+-channel with a glutamate-binding-domain highlights the modular design of ionotropic glutamate-receptors. Commun Biol. 2019 Feb 22;2:75. doi: 10.1038/s42003-019-0320-y. eCollection 2019.

PubMed ID: 30820470

Inada M, Kinoshita M, Sumino A, Oiki S, Matsumori N. A concise method for quantitative analysis of interactions between lipids and membrane proteins. Anal Chim Acta. 2019 Jun 20;1059:103-112. doi: 10.1016/j.aca.2019.01.042. Epub 2019 Feb 1.

PubMed ID: 30876624

Huang G, Voet A, Maglia G. FraC nanopores with adjustable diameter identify the mass of opposite-charge peptides with 44 dalton resolution. Nat Commun. 2019 Feb 19;10(1):835. doi: 10.1038/s41467-019-08761-6.

PubMed ID: 30783102

Krishnan R S, Satheesan R, Puthumadathil N, Kumar KS, Jayasree P, Mahendran KR. Autonomously Assembled Synthetic Transmembrane Peptide Pore. J Am Chem Soc. 2019 Feb 20;141(7):2949-2959. doi: 10.1021/jacs.8b09973. Epub 2019 Feb 12.

PubMed ID: 30702873

Huang G, Voet A, Maglia G. FraC nanopores with adjustable diameter identify the mass of opposite-charge peptides with 44 dalton resolution. Nat Commun. 2019 Feb 19;10(1):835. doi: 10.1038/s41467-019-08761-6.

PubMed ID: 30783102

Krishnan R S, Satheesan R, Puthumadathil N, Kumar KS, Jayasree P, Mahendran KR. Autonomously Assembled Synthetic Transmembrane Peptide Pore. J Am Chem Soc. 2019 Feb 20;141(7):2949-2959. doi: 10.1021/jacs.8b09973. Epub 2019 Feb 12.

PubMed ID: 30702873

Dugger ME, Baker CA. Automated formation of black lipid membranes within a microfluidic device via confocal fluorescence feedback-controlled hydrostatic pressure manipulations. Anal Bioanal Chem. 2019 Jan 7. doi: 10.1007/s00216-018-1550-4. [Epub ahead of print]

PubMed ID: 30617393

Mohid SA, Ghorai A, Ilyas H, Mroue KH, Narayanan G, Sarkar A, Ray SK, Biswas K, Bera AK, Malmsten M, Midya A, Bhunia A. Application of tungsten disulfide quantum dot-conjugated antimicrobial peptides in bio-imaging and antimicrobial therapy. Colloids Surf B Biointerfaces. 2019 Jan 8;176:360-370. doi: 10.1016/j.colsurfb.2019.01.020. [Epub ahead of print]

PubMed ID: 30658284

Bhamidimarri SP, Zahn M, Prajapati JD, Schleberger C, Söderholm S, Hoover J, West J, Kleinekathöfer U, Bumann D, Winterhalter M, van den Berg B. A Multidisciplinary Approach toward Identification of Antibiotic Scaffolds for Acinetobacter baumannii. Structure. 2019 Feb 5;27(2):268-280.e6. doi: 10.1016/j.str.2018.10.021. Epub 2018 Dec 13.

PubMed ID: 30554842

Golla VK, Sans-Serramitjana E, Pothula KR, Benier L, Bafna JA, Winterhalter M, Kleinekathöfer U. Fosfomycin Permeation through the Outer Membrane Porin OmpF. Biophys J. 2019 Jan 22;116(2):258-269. doi: 10.1016/j.bpj.2018.12.002. Epub 2018 Dec 8.

PubMed ID: 30616836

Yang J, Wang Y, Li M, Ying YL, Long YT. Direct Sensing of Single Native RNA with a Single-Biomolecule Interface of Aerolysin Nanopore. Langmuir. 2018 Nov 21. doi: 10.1021/acs.langmuir.8b03264. [Epub ahead of print].

PubMed ID: 30462509

Chengxiang Zhang, Weiyu Zhao , Cong Bian, Xucheng Hou, Binbin Deng, David W. McComb, Xiaofang Chen, and Yizhou Dong. Antibiotic-Derived Lipid Nanoparticles to Treat Intracellular Staphylococcus aureus. ACS Appl. Bio Mater., Article ASAP


Challita EJ, Freeman EC. Hydrogel Microelectrodes for the Rapid, Reliable, and Repeatable Characterization of Lipid Membranes. Langmuir. 2018 Nov 23. doi: 10.1021/acs.langmuir.8b02867. [Epub ahead of print]

PubMed ID: 30468580

Patrick Urban, Stefanie D. Pritzl, David B. Konrad, James A. Frank, Carla Pernpeintner, Christian R. Roeske, Dirk Trauner, and Theobald Lohmueller. Light-Controlled Lipid Interaction and Membrane Organization in Photolipid Bilayer Vesicles. Langmuir, Just Accepted Manuscript. DOI: 10.1021/acs.langmuir.8b03241. Publication Date (Web): October 10, 2018

PubMed ID: 30346771

Sacconi A, Tadini-Buoninsegni F, Tiribilli B, Margheri G. A Comparative Study of Phosphatidylcholine versus Phosphatidylserine-based Solid Supported Membranes for the Preparation of Liposome-Rich Interfaces. Langmuir. 2018 Sep 14. doi: 10.1021/acs.langmuir.8b02397. [Epub ahead of print]

PubMed ID: 30217106

Burden DL, Kim D, Cheng W, Chandler Lawler E, Dreyer DR, Burden LK. Mechanically Enhancing Planar Lipid Bilayers with a Minimal Actin Cortex. Langmuir. 2018 Aug 27. doi: 10.1021/acs.langmuir.8b01847. [Epub ahead of print]

PubMed ID: 30149716

Beltramo PJ, Scheidegger L, Vermant J. Toward Realistic Large-Area Cell Membrane Mimics: Excluding Oil, Controlling Composition, and Including Ion Channels. Langmuir. 2018 May 14. doi: 10.1021/acs.langmuir.8b00837.

PubMed ID: 29715042

Lindsey, H., N.O. Petersen, and S.I. Chan. (1979). Physicochemical characterization of 1,2-diphytanoyl-sn-glycero-3-phosphocholine in model membrane systems. Biochim Biophys Acta 555:147-67. [PubMed]

PubMed ID: 476096

Villar, G., A.D. Graham, and H. Bayley. (2013). A tissue-like printed material. Science 340:48-52. [PubMed]

PubMed ID: 23559243

Pan, J., X. Cheng, F.A. Heberle, B. Mostofian, N. Kucerka, P. Drazba, and J. Katsaras. (2012). Interactions between Ether Phospholipids and Cholesterol As Determined by Scattering and Molecular Dynamics Simulations. J Phys Chem B [PubMed]

PubMed ID: 23199292

Tristram-Nagle, S., Kim, D.J., Akhunzada, N., Kucerka, N., Mathai, J.C., Katsaras, J., Zeidel, M., Nagle, J.F. (2010) Structure and water permeability of fully hydrated diphytanoylPC. Chem Phys Lipids.163:630-7. [PubMed]

PubMed ID: 20447383

Redwood, W.R., Pfeiffer, F.R., Weisbach, J.A., Thompson, T.E. (1971) Physical properties of bilayer membranes formed from a synthetic saturated phospholipid in n-decane. Biochim Biophys Acta.233:1-6. [PubMed]

PubMed ID: 5579131
Transition Temperature of Diphytanoyl PC

Transition Temperature Of Diphytanoyl Pc

Certificates of Analysis
  • Certificate of Analysis(Lot No. 850356C-200MG-A-145and 5649CNA145)
  • Certificate of Analysis(Lot No. 850356C-25MG-A-145and 5649CJA145)
  • Certificate of Analysis(Lot No. 850356C-500MG-A-145and 5649CPA145)
  • Certificate of Analysis(Lot No. 850356P-200MG-A-145and 5649PNA145)
  • Certificate of Analysis(Lot No. 850356P-25MG-A-145and 5649PJA145)
  • Certificate of Analysis(Lot No. 850356P-25MG-B-145and 5649PJB145)
  • Certificate of Analysis(Lot No. 850356P-500MG-A-145and 5649PPA145)
  • Certificate of Analysis(Lot No. 850356P-25MG-C-145and 5649PJC145)
  • Certificate of Analysis(Lot No. 850356P-CONF-A-145and 5649PWA145)
  • Certificate of Analysis(Lot No. 850356P-25MG-E-145and 5649PJE145)
  • Certificate of Analysis(Lot No. 850356C-25MG-B-145and 5649CJB145)
  • Certificate of Analysis(Lot No. 850356C-200MG-B-145and 5649CNB145)
  • Certificate of Analysis(Lot No. 850356P-500MG-B-145and 5649PPB145)
  • Certificate of Analysis(Lot No. 850356P-200MG-B-145and 5649PNB145)
  • Certificate of Analysis(Lot No. 850356P-500MG-C-145and 5649PPC145)
  • Certificate of Analysis(Lot No. 850356P-200MG-C-145and 5649PNC145)
  • Certificate of Analysis(Lot No. 850356P-25MG-F-145and 5649PJF145)
  • Certificate of Analysis(Lot No. 850356P-10G-A-145and 5649PSA145)
  • Certificate of Analysis(Lot No. 850356P-5G-A-146and 5649PRA146)
  • Certificate of Analysis(Lot No. 850356C-25MG-C-145and 5649CJC145)
  • Certificate of Analysis(Lot No. 850356P-500MG-D-145and 5649PPD145)
  • Certificate of Analysis(Lot No. 850356P-200MG-D-145and 5649PND145)
  • Certificate of Analysis(Lot No. 850356C-200MG-C-145and 5649CNC145)
  • Certificate of Analysis(Lot No. 850356P-5MG-A-146and 5649PHA146)
  • Certificate of Analysis(Lot No. 850356C-200MG-A-146and 5649CNA146)
  • Certificate of Analysis(Lot No. 850356P-500MG-A-146and 5649PPA146)
  • Certificate of Analysis(Lot No. 850356C-200MG-B-146and 5649CNB146)
  • Certificate of Analysis(Lot No. 850356P-200MG-A-146and 5649PNA146)
  • Certificate of Analysis(Lot No. 850356C-25MG-A-146and 5649CJA146)
  • Certificate of Analysis(Lot No. 850356P-25MG-A-146and 5649PJA146)
  • Certificate of Analysis(Lot No. 850356C-500MG-A-146and 5649CPA146)
  • Certificate of Analysis(Lot No. 850356C-200MG-C-146and 5649CNC146)
  • Certificate of Analysis(Lot No. 850356C-500MG-B-146and 5649CPB146)
  • Certificate of Analysis(Lot No. 850356P-500MG-B-146and 5649PPB146)
  • Certificate of Analysis(Lot No. 850356P-25MG-B-146and 5649PJB146)
  • Certificate of Analysis(Lot No. 850356C-200MG-D-146and 5649CND146)
  • Certificate of Analysis(Lot No. 850356P-25MG-C-146and 5649PJC146)
  • Certificate of Analysis(Lot No. 850356C-200MG-E-146and 5649CNE146)
  • Certificate of Analysis(Lot No. 850356C-25MG-B-146and 5649CJB146)
  • Certificate of Analysis(Lot No. 850356C-25MG-C-146and 5649CJB146)
  • Certificate of Analysis(Lot No. 850356C-500MG-C-146and 5649CPC146)
  • Certificate of Analysis(Lot No. 850356C-200MG-F-146and 5649CNF146)
  • Certificate of Analysis(Lot No. 850356C-25MG-D-146and 5649CJD146)
  • Certificate of Analysis(Lot No. 850356P-500MG-G-146and 5649PPG146)
  • Certificate of Analysis(Lot No. 850356P-500MG-F-146and 5649PPF146)
  • Certificate of Analysis(Lot No. 850356P-25MG-H-146and 5649PJH146)
  • Certificate of Analysis(Lot No. 850356P-200MG-E-146and 5649PNE146)
  • Certificate of Analysis(Lot No. 850356C-200MG-G-146and 5649CNG146)
  • Certificate of Analysis(Lot No. 850356C-25MG-E-146and 5649CJE146)
  • Certificate of Analysis(Lot No. 850356P-200MG-F-146and 5649PNF146)
  • Certificate of Analysis(Lot No. 850356P-25MG-I-146and 5649PJI146)
  • Certificate of Analysis(Lot No. 850356C-25MG-F-146and 5649CJF146)
  • Certificate of Analysis(Lot No. 850356C-200MG-H-146and 5649CNH146)
  • Certificate of Analysis(Lot No. 850356P-25MG-J-146and 5649PJJ146)
  • Certificate of Analysis(Lot No. 850356P-200MG-G-146and 5649PNG146)
  • Certificate of Analysis(Lot No. 850356P-500MG-H-146and 5649PPH146)
Base Price:${originalprice|money}
Custom Packaging:(${concentration} @$4.00/ea. + $100)${custompackagingtotal|money}
Packaging:${concentration}
Item Total:${totalprice|money}
(Sales Tax may apply)
Please select an option above.
${sku} - ${concentration}

AvantiPolarLipids公司是美国著名的磷脂类产品的生产商,该公司主要为各种制药厂和研究机构提供从毫克级到公斤级乃至吨级的磷脂类和甾体类中间体和试剂。为世界范围内的研究机构和制药公司提供1000种以上脂类产品,由于其产品的高纯度而享誉全球。40年来,AvantiPolarLipids公司为世界各地的研究人员和制药公司提供脂类产品。公司的产品不仅范围日益扩大,其纯度之高也是无人能及。 AvantiPolarLipids,Inc.,hasalonghistoryof50yearscreatingthehighestpuritylipidsavailable.Ourpassionforhighqualityanduniqueproductsisonlyexceededbyourexcellentreputationinthemarketplace. Althoughweareknownforourlipids,weareMorethanLipids.Weoffersolutionsfortheentireproductcycle…ResearchtoCommercialization. AvantiPolarLipids公司的主要产品和服务包括:(1)ResearchProductsHighestPurityLipidReagents(2)cGMPManufacturingAPI&ContractManufacturing(3)AdjuvantsImmunotherapy&VaccineDevelopment(4)AnalyticalServicesLipidAnalysis(5)LipidomicsMassSpecStandards,Antibodies&LipidToolbox(6)Formulationsliposomes&Nanoparticles(7)EquipmentLiposomeProductionTools(8)CustomServicesSynthesis&Beyond


AvantiPolarLipids是美国著名的磷脂类产品的生产商,该公司主要为各种制药厂和研究机构提供从毫克级到公斤级乃至吨级的磷脂类和甾体类中间体和试剂。为世界范围内的研究机构和制药公司提供1000种以上脂类产品,由于其产品的高纯度而享誉全球。40年来,AvantiPolarLipids公司为世界各地的研究人员和制药公司提供脂类产品。公司的产品不仅范围日益扩大,其纯度之高也是无人能及。


AvantiPolarLipidsInc,是美国著名的磷脂类产品的生产商,该公司主要为各种制药厂和研究机构提供从毫克级到公斤级乃至百公斤级的磷脂类和甾体类中间体和试剂。主要产品Naturalsphingolipids天然鞘脂类Naturalphospholipids天然磷脂类Naturallipidsbyextraction天然提取脂类Referencestandards相关标准品Syntheticsphingolipids合成鞘脂类--Sphingosines&S-1-P鞘氨醇和鞘氨醇-1-磷酸盐--Ceramides神经酰胺--Sphingomyelins鞘磷脂--Sphingosine&ceramidederivatives鞘氨醇及神经酰胺衍生物--Sphinganine&derivatives鞘氨醇及其衍生物--C17sphingolipids十七碳鞘脂类--C20sphingolipids二十碳鞘脂类--Phytosphingosine&derivatives植物鞘氨醇及其衍生物Syntheticlipids&phospholipids合成脂质与磷脂--PC卵磷脂--PA磷脂酸--PE脑磷脂--PG磷脂酰甘油--PS磷脂酰丝氨酸--PI,PIP2&PIP3磷脂酰肌醇,磷脂酰肌醇-4,5-二磷酸,磷脂酰-3,4,5-三磷酸--CA胆酸--LysoPC溶源性卵磷脂--LysoPA溶源性磷脂酸--LysoPAAnalogues溶源性磷脂酸类似物--Lysobio-PA溶源性双磷脂酸--LysoPE,PG&PS溶源性脑磷脂,磷脂酰甘油和磷脂酰丝氨酸--AlkylPC烷基卵磷脂--Diether&Diphytanoyletherlipids二醚与二植烷醚脂质--PAF血小板活化因子--AcylPAFAnalog酰化血小板活化因子类似物--Brominatedphosphocholines溴代胆碱磷酸--Alkylphosphatederivatives烷基磷酸盐衍生物--Plasmalogen缩醛磷脂--Functionalizedlipids功能性脂类--Biotinylatedlipids生物素酰化脂质--Bioactivelipids生物活性脂类Syntheticphospholipids合成磷酸--AcylcoenzymeA乙酰辅酶A--Metabolicintermediates代谢中间产物--Adhesivelipid粘合脂质--pHsensitivelipids酸度计用脂质Transfectionreagents转染试剂Sterolderivatives甾酮衍生物Lipidblends混合脂质Glycosylatedphospholipids糖化磷脂Fluorinatedphospholipids氟化磷脂Chelators螯合剂Pre-mixedlipidsforbicelleformation构型分析用预混合脂质Diacylglycerols&analogues甘油二酯与类似物Deuteriumlabeledlipids氘标记脂质C13PC碳-13标记卵磷脂DoxylPC自旋标记卵磷脂TempoPCTempo(4-氧-4-羟-四甲基呱啶氮氧自由基)标记卵磷脂Fluoresecentsphingolipids荧光标记鞘脂类--Omegalabeled欧米加标记物--Fattyacidlabeled脂肪酸标记物Fluoresecentcholesterol荧光标记胆固醇Fluoresecentphospholipids荧光标记磷脂--Fattyacidlabeled脂肪酸标记物--Headgrouplabeled首基标记物Polymerizablelipids聚合脂质Poly(Ethyleneglycol)-lipidconjugates共轭聚脂质FunctionalizedPEGlipids功能PEG脂质Analyticalservices分析服务Drugdeliveryproduct药物运送载体Bulklipidsforpharmaceuticalproduction工业级脂质Equipment设备


蚂蚁淘电商平台
ebiomall.com
公司介绍
公司简介
蚂蚁淘(www.ebiomall.cn)是中国大陆目前唯一的生物医疗科研用品B2B跨境交易平台, 该平台由多位经验丰富的生物人和IT人负责运营。蚂蚁淘B2B模式是指客户有采购意向后在蚂蚁 淘搜索全球供应信息,找到合适的产品后在蚂蚁淘下单,然后蚂蚁淘的海外买手进行跨境采购、 运输到中国口岸,最后由蚂蚁淘国内团队报关运输给客户...
蚂蚁淘承诺
正品保证: 全球直采 在线追溯 蚂蚁淘所有产品都是自运营的,我们已经跟国外多家厂方建立品牌推广合作关系, 获得对方的支持和授权; 同时客户可以通过订单详情查看到货物从厂方至客户的所有流程, 确保货物的来源; 正规报关,提供13%增值税发票。
及时交付: 限时必达 畅选无忧 蚂蚁淘的运营团队都是有着多年经验的成员,他们熟悉海外采购、仓储物流、报关等环节; 同时通过在线的流程监控,蚂蚁淘的进口速度比传统企业提高了50%以上, 部分产品甚至能做到7-10天到货,即蚂蚁淘的“时必达”服务。
轻松采购: 在线下单 简单省事 蚂蚁淘的价格是真实透明的,并且具有很大的价格优势,不需要繁杂的询价比价; 报价单与合同可以直接在线生成或打印;就像在京东购物一样, 您的鼠标点击几 次即完成在蚂蚁淘的采购,订单详情会告诉您所有进程。
售后申请: 耐心讲解 优质服务 蚂蚁淘提供的产品在使用过程中如因产品质量问题有售后需求时, 您可通过我的订单提交您的“申请售后”, 蚂蚁淘产品顾问会第一时间为您处理, 在售后服务过程中如遇到问题也可致电蚂蚁淘客服热线:4000-520-616。
广州赛莱拉干细胞科技股份有限公司在发布的成脂诱导供应信息,浏览与成脂诱导相关的产品或在搜索更多与成脂诱导相关的内容。 查看更多>
For amplification of cognate sequences from different organisms, or for "evolutionary PCR", one may increase the chances of getting product by designing 查看更多>
赛业(广州)生物科技有限公司在发布的Wistar大鼠脂肪间质干细胞成脂诱导分化培养基供应信息,浏览与Wistar大鼠脂肪间质干细胞成脂诱导分化培养基相关的产品或在搜索更多与Wistar大鼠脂肪间质干细胞成脂诱导分化培养基相关的内容。 查看更多>
上海麒盟生物科技有限公司在发布的人脐带间充质干细胞成脂分化试剂盒供应信息,浏览与人脐带间充质干细胞成脂分化试剂盒相关的产品或在搜索更多与人脐带间充质干细胞成脂分化试剂盒相关的内容。 查看更多>
人脐带间充质干细胞成脂肪诱导分化试剂盒是由深圳市伟通生物公司代理或销售的伟通生物品牌的试剂,产品来源于广东深圳。深圳市伟通生物公司是中国最权威的人脐带间充质干细胞成脂肪诱导分化试剂盒试剂销售服务商之一,在深圳等地方销售人脐带间充质干细胞成脂肪诱导分化试剂盒试剂已经多年。生物在线为您提供众多企业人脐带间充质干细胞成脂肪诱导分化试剂盒仪器产品及图片,以便挑选到性价比高,合适的人脐带间充质干细胞成脂肪诱导分化试剂盒产品 查看更多>
大环内酯类抗生素(macrolides antibiotics,MA)是一类分子结构中具有12-16 碳内酯环的抗菌药物的总称,通过阻断50s 核糖体中肽酰转移酶的活性来抑制细菌蛋白质合成,属于快速抑菌剂。 主要用于治疗需氧革兰阳性球菌和阴性球菌、某些厌氧菌以及军团菌、支原体、衣原体等感染。但最近的研究表明大环... 查看更多>
血脂是血浆中的中性脂肪(甘油三酯)和类脂(磷脂、糖脂、固醇、类固醇)的总称,广泛存在于人体中。它们是生命细胞的基础代谢必需物质。一般说来,血脂中的主要成分是甘油三酯和胆固醇,其中甘油三酯参与人体内能量代谢,而胆固醇则主要用于合成细胞浆膜、类固醇激素和胆汁酸。... 查看更多>
赛业(广州)生物科技有限公司在发布的成人脂肪间质干细胞成脂诱导分化培养基供应信息,浏览与成人脂肪间质干细胞成脂诱导分化培养基相关的产品或在搜索更多与成人脂肪间质干细胞成脂诱导分化培养基相关的内容。 查看更多>
上海埃德斯生物科技有限公司在发布的人类间充质干细胞诱导成脂分化试剂盒供应信息,浏览与人类间充质干细胞诱导成脂分化试剂盒相关的产品或在搜索更多与人类间充质干细胞诱导成脂分化试剂盒相关的内容。 查看更多>
根据本周在线发表在“ 自然 - 细胞生物学”杂志上的一项新研究,人胚胎干细胞(hESCs)可编程在小鼠体内形成两种不同类型的功能性脂肪细胞 。胚胎细胞是多能的,因为它们被认为保留了在人体内产生每种细胞类型的能力。人体的某些未成熟细胞也可以在实验室中诱导形成多种细胞类型。这些所谓的诱导人多能干细胞(hiPSC)也可用于开发各种人类疾病的模型。 由马萨诸塞州剑桥哈佛大学Chad Cowan领导的一组研究人员,包括多哈卡塔尔基金会的Heba Al-Siddiqi,分两 查看更多>
常见问题
蚂蚁淘所售产品均为正品吗?
蚂蚁淘的创始人兼CEO是钟定松先生,具有十年的从业经验,在业界享有良好的口碑; Ebiomall是跨境直采平台,我们直接从厂家采购,自己的团队负责国际物流和清关,中间没有第三方,蚂蚁淘承诺所售产品仅为正品,假一罚十。
下单后可以修改订单吗?
未确认状态的订单可以修改,打开“订单详情”页面,点击右上角的“修改订单”即可,若已审核确定,则订单无法修改。
商品几天可以发货?
现货产品付款审核后即可发货,大部分期货产品在3周左右即可到货,提供时必达服务的产品订单审核十天内即可发货。
订单如何取消?
如订单处于未确定状态,进入“我的订单"页面,找到要取消的订单,点击“取消订单”按钮。
可以开发票吗?
本网站所售商品都是正规清关,均开具13%正规发票,发票金额含配送费金额,另有说明的除外。
如何联系商家?
蚂蚁淘任何页面都有在线咨询功能,点击“联系客服”、“咨询”或“在线咨询”按钮,均可咨询蚂蚁淘在线客服人员, 或拨打4000-520-616,除此之外客户可在 联系我们页面找到更多的联系方式。
收到的商品少了/发错了怎么办?
同个订单购买多个商品可能会分为一个以上包裹发出,可能不会同时送达,建议查看订单详情是否是部分发货状态;如未收到,可联系在线客服或者致电4000-520-616。
退换货/维修需要多长时间?
一般情况下,退货处理周期为客户收到产品一个月内(以快递公司显示签收时间为准),包装规格、数量、品种不符,外观毁损、短缺或缺陷,请在收到货24小时内申请退换货;特殊商品以合同条款为准。
商品咨询
脂肪代谢 123
卢海宁0072021-07-21
一、甘油三酯的合成代谢
合成部位:肝、脂肪组织、小肠,其中肝的合成能力最强。
合成原料:甘油、脂肪酸
1、甘油一酯途径(小肠粘膜细胞)
脂酰CoA转移酶脂酰CoA转移酶
2-甘油一酯+脂酰CoA———————→1,2-甘油二酯+脂酰CoA————————→甘油三酯 2、甘油二酯途径(肝细胞及脂肪细胞)
脂酰CoA转移酶脂酰CoA转移酶
葡萄糖→3-磷酸甘油+脂酰CoA——————→1脂酰-3-磷酸甘油+脂酰CoA———————→
磷脂酸磷酸酶 脂酰CoA转移酶
磷脂酸——————→1,2甘油二酯+脂酰CoA——————→甘油三酯
二、甘油三酯的分解代谢
1、脂肪的动员 储存在脂肪细胞中的脂肪被脂肪酶逐步水解为游离脂肪酸(FFA)及甘油并释放入血以供其它组织氧化利用的过程。
激素敏感性甘油三酯脂肪酶
甘油三酯————————————→甘油二酯+FFA→甘油一酯+FFA→甘油+FFA→α-磷酸甘油→磷酸二羟丙酮→糖酵解或糖异生途径
2、脂肪酸的β-氧化
1)脂肪酸活化(胞液中)
脂酰CoA合成酶
脂酸+ATP———————→脂酰CoA(含高能硫酯键)+AMP
2)脂酰CoA进入线粒体
3)脂肪酸β-氧化
脂酰CoA进入线粒体基质后,进行脱氢、加水、再脱氢及硫解等四步连续反应,生成1分子比原来少2个碳原子的脂酰CoA、1分子乙酰CoA、1分子FADH2和1分子NADH。以上生成的比原来少2个碳原子的脂酰CoA,可再进行脱氢、加水、再脱氢及硫解反应。如此反复进行,以至彻底。4)能量生成
以软脂酸为例,共进行7次β-氧化,生成7分子FADH2、7分子NADH及8分子乙酰CoA,即共生成(7*2)+(7*3)+(8*12)-2=129
5)过氧化酶体脂酸氧化 主要是使不能进入线粒体的廿碳,廿二碳脂酸先氧化成较短链脂酸,以便进入线粒体内分解氧化,对较短链脂酸无效。
三、酮体的生成和利用
组织特点:肝内生成肝外用。
合成部位:肝细胞的线粒体中。
酮体组成:乙酰乙酸、β-羟丁酸、丙酮。
1、生成
(代谢流程~~~~)
2、利用
丙酮可随尿排出体外,部分丙酮可在一系列酶作用下转变为丙酮酸或乳酸,进而异生成糖。在血中酮体剧烈升高时,从肺直接呼出。
四、脂酸的合成代谢
1、 软脂酸的合成
合成部位:线粒体外胞液中,肝是体体合成脂酸的主要场所。
合成原料:乙酰CoA、ATP、NADPH、HCO3-、Mn++等。
合成过程:
1)线粒体内的乙酰CoA不能自由透过线粒体内膜,主要通过柠檬酸-丙酮酸循环转移至胞液中。
2)乙酰CoA羧化酶
乙酰CoA———————→丙二酰CoA
3)丙二酰CoA通过酰基转移、缩合、还原、脱水、再还原等步骤,碳原子由2增加至4个。经过7次循环,生成16个碳原子的软脂酸。更长碳链的脂酸则是对软脂酸的加工,使其碳链延长。在内质网脂酸碳链延长酶体系的作用下,一般可将脂酸碳链延长至二十四碳,以十八碳的硬脂酸最多;在线粒体脂酸延长酶体系的催化下,一般可延长脂酸碳链至24或26个碳原子,而以硬脂酸最多。
2、不饱和脂酸的合成
人体含有的不饱和脂酸主要有软油酸、油酸、亚油酸,亚麻酸及花生四烯酸等,前两种单不饱和脂酸可由人体自身合成,而后三种多不饱和脂酸,必须从食物摄取。
五、前列腺素及其衍生物的生成
六、甘油磷脂的合成与代谢
1、 合成
除需ATP外,还需CTP参加。CTP在磷脂合成中特别重要,它为合成CDP-乙醇胺、CDP-胆碱及CDP-甘油二酯等活化中间物所必需。
1)甘油二酯途径
(代谢流程~~)
2)CDP-甘油二酯途径
(代谢流程~~~)
2、降解
生物体内存在能使甘油磷脂水解的多种磷脂酶类,根据其作用的键的特异性不同,分为磷脂酶A1和A2,磷脂酶B,磷脂酶C和磷脂酶D。
磷脂酶A2特异地催化磷酸甘油酯中2位上的酯键水解,生成多不饱和脂肪酸和溶血磷脂。后者在磷脂酶B作用,生成脂肪酸及甘油磷酸胆碱或甘油磷酸乙醇胺,再经甘油酸胆碱水解酶分解为甘油及磷酸胆碱。磷脂酶A1催化磷酸甘油酯1位上的酯键水解,产物是脂肪酸和溶血磷脂。
七、胆固醇代谢
1、 合成
合成部位:肝是主要场所,合成酶系存在于胞液及光面内质网中。
合成原料:乙酰CoA(经柠檬酸-丙酮酸循环由线粒体转移至胞液中)、ATP、NADPH等。
合成过程:
1) 甲羟戊酸的合成(胞液中)
HMGCoA还原酶
2×乙酰CoA→乙酰乙酰CoA→HMGCoA+NADPH———————→甲羟戊酸
2) 鲨烯的合成(胞液中)
3)胆固醇的合成(滑面内质网膜上)
合成调节:
1)饥饿与饱食 饥饿可抑制肝合成胆固醇,相反,摄取高糖、高饱和脂肪膳食后,肝HMGCoA还原酶活性增加,胆固醇合成增加。
2) 胆固醇 胆固醇可反馈抑制肝胆固醇的合成。主要抑制HMGCoA还原酶活性。
3)激素 胰岛素及甲状腺素能诱导肝HMGCoA还原酶的合成,增加胆固醇的合成。胰
高血糖素及皮质醇则能抑制并降低HMGCoA还原酶的活性,因而减少胆固醇的合成;甲状腺素除能促进合成外,又促进胆固醇在肝转变为胆汁酸,且后一作用较强,因而甲亢时患者血清胆固醇含量反而下降。
2、 转化
1)胆固醇在肝中转化成胆汁酸是胆固醇在体内代谢的主要去路,基本步骤为:
(代谢流程~~~)
2)转化为类固醇激素 胆固醇是肾上腺皮质、睾丸,卵巢等内分泌腺合成及分泌类固醇激素的原料,如睾丸酮、皮质醇、雄激素、雌二醇及孕酮等。
3)转化为7-脱氢胆固醇 在皮肤,胆固醇可氧化为7-脱氢胆固醇,后者经紫外光照射转变为维生素D。
3、胆固醇酯的合成
细胞内游离胆固醇在脂酰胆固醇脂酰转移酶(ACAT)的催化下,生成胆固醇酯;
血浆中游离胆固醇在卵磷脂胆固醇脂酰转移酶(LCAT)的催化下,生成胆固醇酯和溶血卵磷酯。
八、血浆脂蛋白
1、分类
1)电泳法:α、前β、β及乳糜微粒
2)超速离心法:乳糜微粒(含脂最多),极低密度脂蛋白(VLDL)、低密度脂蛋白(LDL)和高密度脂蛋白(HDL),分别相当于电泳分离的CM、前β-脂蛋白、β-脂蛋白及α-脂蛋白等四类。
2、组成
血浆脂蛋白主要由蛋白质、甘油三酯、磷脂、胆固醇及其酯组成。乳糜微粒含甘油三酯最多,蛋白质最少,故密度最小;VLDL含甘油三酯亦多,但其蛋白质含量高于CM;LDL含胆固醇及胆固醇酯最多;含蛋白质最多,故密度最高。
血浆脂蛋白中的蛋白质部分,基本功能是运载脂类,称载脂蛋白。HDL的载脂蛋白主要为apoA,LDL的载脂蛋白主要为apoB100,VLDL的载脂蛋白主要为apoB、apoC,CM的载脂蛋白主要为apoC。
3、生理功用及代谢
1)CM 运输外源性甘油三酯及胆固醇的主要形式。成熟的CM含有apoCⅡ,可激活脂蛋白脂肪酶(LPL),LPL可使CM中的甘油三酯及磷脂逐步水解,产生甘油、脂酸及溶血磷脂等,同时其表面的载脂蛋白连同表面的磷脂及胆固醇离开CM,逐步变小,最后转变成为CM残粒。
2)VLDL 运输内源性甘油三酯的主要形式。VLDL的甘油三酯在LPL作用下,逐步水解,同时其表面的apoC、磷脂及胆固醇向HDL转移,而HDL的胆固醇酯又转移到VLDL。最后只剩下胆固醇酯,转变为LDL。
3)LDL 转运肝合成的内源性胆固醇的主要形式。肝是降解LDL的主要器官。apoB100水解为氨基酸,其中的胆固醇酯被胆固醇酯酶水解为游离胆固醇及脂酸。游离胆固醇在调节细胞胆固醇代谢上具有重要作用:①抑制内质网HMGCoA还原酶;②在转录水平上阴抑细胞LDL受体蛋白质的合成,减少对LDL的摄取;③激活ACAT的活性,使游离胆固醇酯化成胆固醇酯在胞液中储存。
4)HDL 逆向转运胆固醇。HDL表面的apoⅠ是LCAT的激活剂,LCAT可催化HDL生成溶血卵磷脂及胆固醇酯。
脂类物质具体是什么?
不相等,原因是脂质(脂类)包括脂肪。
脂类,由脂肪酸和醇作用生成的酯及其衍生物统称为脂类,这是一类一般不溶于水而溶于脂溶性溶剂的化合物。
脂肪:存在于人体和动物的皮下组织及植物体中,是生物体的组成部分和储能物质。
脂类所指代的一类物质较脂肪更广。而酯类则是从化学角度来看物质世界,有不少是化工原料。有些酯类是脂肪的构成成分。
如上所述,脂类包括脂肪酸(多是4碳以上的长链一元羧酸)和醇(包括甘油醇、硝氨醇、高级一元醇和固醇)等所组成的酯类及其衍生物。包括单纯脂类、复合酯类及衍生脂质。
脂肪是指人体或动物体内的、由一分子甘油和三分子脂肪酸结合而成的甘油三酯。
酯类是指酸(羧酸或无机含氧酸)与醇起反应生成的一类有机化合物。低分子量酯是无色、易挥发的芳香液体,如:如乙酸乙酯CH3COOC2H5、乙酸苯酯CH3COOC6H5、苯甲酸甲酯C6H5COOCH3等;高级饱和脂肪酸单酯常为无色无味的固体,高级脂肪酸与高级脂肪醇形成的酯为蜡状固体。所以,酯类与脂类不可替代使用。

我用HepG2细胞进行NAFLD的体外模型研究,现在想多合成和分泌的脂质进行检测,需要检测细胞和培养基中的甘油三酯,胆固醇酯,总胆固醇,和磷脂,请问应该怎么操作呢?有没有专门的试剂盒检测前面4种脂类呢?菜鸟一枚,实在是被这个弄得有点头大,求大神多多指教!万分感谢!

通常意义上讲,脂肪单指甘油三酸脂,而脂质的范围更广一些。脂质也叫脂类,包括两大类,一是脂肪,二是类脂。其中类脂又包括两类,一是磷脂,二是类脂。即:脂类包括油脂(甘油三酯)和类脂(磷脂、固醇类)。向左转|向右转
脂质类激素也就是其化学本质是脂类的激素。
有些是类固醇化合物(甾体激素),有些事脂肪酸衍生物
类固醇激素例如:肾上腺皮质激素、性激素等。
脂肪酸衍生物例如:前列腺素等。
胆固醇,性激素,维生素D都属于脂类么?
我们在临床上经常看到有医生把头孢类药物和大环内脂类药物联用,但是在药理上明确的指出贝他类药物属于繁殖...
脂类的食物来源123
洪燕桃2017-10-02
动物内脏、肥肉
1、脂质是脂肪、类脂、固醇的总称在强调类别时,脂质也叫做脂类。
2、脂类是油、脂肪、类脂的总称.食物中的油脂主要是油和脂肪,一般把常温下是液体的称作油,而把常温下是固体的称作脂肪.
3、脂肪是由甘油和脂肪酸组成的三酰甘油酯,其中甘油的分子比较简单,而脂肪酸的种类和长短却不相同.因此脂肪的性质和特点主要取决于脂肪酸,不同食物中的脂肪所含有的脂肪酸种类和含量不一样.自然界有40多种脂肪酸,因此可形成多种脂肪酸甘油三酯.脂肪酸一般由4个到24个碳原子组成.
细胞培养基干粉配置过程中,脂类物质比如亚油酸,亚麻酸等不饱和脂肪酸等,不太容易溶解。
即使用乙醇,还是可能有后期溶出的问题。
大家有何经验吗?比如,加热?或者添加分散剂?
谢谢