请使用支持JavaScript的浏览器! eylabs/HRP Conjugated Maackia amurensis Lectin -MAA-, 1mg/HRP Conjugated Maackia amurensis Lectin -MAA-, 1mg/H-7801-1_蚂蚁淘,【正品极速】生物医学科研用品轻松购|ebiomall 蚂蚁淘商城
商品信息
联系客服
eylabs/HRP Conjugated Maackia amurensis Lectin -MAA-, 1mg/HRP Conjugated Maackia amurensis Lectin -MAA-, 1mg/H-7801-1
郑重提醒:
无质量问题不接受退换货,下单前请仔细核对信息。
下单后请及时联系客服核对商品价格,订单生效后再付款。
eylabs/HRP Conjugated Maackia amurensis Lectin -MAA-, 1mg/HRP Conjugated Maackia amurensis Lectin -MAA-, 1mg/H-7801-1
品牌 / 
eylabs
货号 / 
H-7801-1
美元价:
(友情提示:该价格仅为参考,欢迎联系客服询价!)
数    量:
免费咨询热线
4000-520-616

Product Description

HRP Conjugated Maackia amurensis Lectin -MAA-, 1mg

Product volume may vary.

With the exception of Diagnostic Microbiology Products all biochemicals described are for research use only. The biochemical reagents are not designed for use in therapeutic or diagnostic applications. We are unable to ship to individuals. Please place all orders through an established firm or institution. Nothing disclosed is to be construed as a recommendation to use our products in violation of any patents. All research products are offered without warranty or guarantee, since the ultimate condition of use and the variability in material handling are beyond our control.

Additional Information

Weight0.2500 lbs
蚂蚁淘电商平台
ebiomall.com
公司介绍
公司简介
蚂蚁淘(www.ebiomall.cn)是中国大陆目前唯一的生物医疗科研用品B2B跨境交易平台, 该平台由多位经验丰富的生物人和IT人负责运营。蚂蚁淘B2B模式是指客户有采购意向后在蚂蚁 淘搜索全球供应信息,找到合适的产品后在蚂蚁淘下单,然后蚂蚁淘的海外买手进行跨境采购、 运输到中国口岸,最后由蚂蚁淘国内团队报关运输给客户...
蚂蚁淘承诺
正品保证: 全球直采 在线追溯 蚂蚁淘所有产品都是自运营的,我们已经跟国外多家厂方建立品牌推广合作关系, 获得对方的支持和授权; 同时客户可以通过订单详情查看到货物从厂方至客户的所有流程, 确保货物的来源; 正规报关,提供13%增值税发票。
及时交付: 限时必达 畅选无忧 蚂蚁淘的运营团队都是有着多年经验的成员,他们熟悉海外采购、仓储物流、报关等环节; 同时通过在线的流程监控,蚂蚁淘的进口速度比传统企业提高了50%以上, 部分产品甚至能做到7-10天到货,即蚂蚁淘的“时必达”服务。
轻松采购: 在线下单 简单省事 蚂蚁淘的价格是真实透明的,并且具有很大的价格优势,不需要繁杂的询价比价; 报价单与合同可以直接在线生成或打印;就像在京东购物一样, 您的鼠标点击几 次即完成在蚂蚁淘的采购,订单详情会告诉您所有进程。
售后申请: 耐心讲解 优质服务 蚂蚁淘提供的产品在使用过程中如因产品质量问题有售后需求时, 您可通过我的订单提交您的“申请售后”, 蚂蚁淘产品顾问会第一时间为您处理, 在售后服务过程中如遇到问题也可致电蚂蚁淘客服热线:4000-520-616。
Plexin A1 在胃癌中的表达及其与肿瘤细胞增殖和血管生成关系的研究赵向阳 陈凛 许倩 李玉红赵向阳,陈凛,中国人民解放军总医院普通外科 北京市 100853许倩,承德医学院基础医学研究所 河北省承德市 067000李玉红,承德医学院病理教研室 河北省承德市 067000通讯作者:陈凛,100853,北京市复兴路 28 号,中国人民解放军总医院普通外科。chenlinbj@vip.sina.com电话:010-66937846 传真: 查看更多>
上海宾智生物科技有限公司在发布的illumina PE-410-1001 HiSeq 3000/4000 PE簇生成试剂盒供应信息,浏览与illumina PE-410-1001 HiSeq 3000/4000 PE簇生成试剂盒相关的产品或在搜索更多与illumina PE-410-1001 HiSeq 3000/4000 PE簇生成试剂盒相关的内容。 查看更多>
For amplification of cognate sequences from different organisms, or for "evolutionary PCR", one may increase the chances of getting product by designing 查看更多>
Plasmid isolation from yeast (see Clontech YPH, p31) Pick colonies into 0.5ml of SD-Leu (or other appropriate SD medium) Vortex for 1min Leave to grow O/N for 查看更多>
点击浏览该文件 查看更多>
红荣微再(上海)生物工程技术有限公司在发布的illumina公司基因测序试剂盒及生物试剂和Rubicon上海授权代理商单细胞全基因组测序试剂盒现货供应供应信息,浏览与illumina公司基因测序试剂盒及生物试剂和Rubicon上海授权代理商单细胞全基因组测序试剂盒现货供应相关的产品或在搜索更多与illumina公司基因测序试剂盒及生物试剂和Rubicon上海授权代理商单细胞全基因组测序试剂盒现货供应相关的内容。 查看更多>
Tymora Analytical公司产品介绍【代理商整理|部分现货】 查看更多>
Beta-galactosidase Reporter Gene Assay (Liquid Form) REFERENCE: Hoffman, G., Garrison, T. R., and Dohlman, H. G., Analysis of RGS proteins in Saccharomyces ce 查看更多>
mTn-3xHA/GFP TRTn3 terminal inverted repeatsXaFactor Xa cleavage recognition siteloxRlox site, target for Cre recombinaseGFPgene encoding Green Fluorescent Pro 查看更多>
v:* {behavior:url(#default#VML);}o:* {behavior:url(#default#VML);}w:* {behavior:url(#default#VML);}.shape {behavior:url(#default#VML);} /* Style Definitions */ table.MsoNormalTable{mso-style-name:普通表格;mso-tstyle-rowband-... 查看更多>
2021-08-30
based on M.D. Rose, F. Winston, and P. Hieter (1990) Methods in Yeast Genetics: A Laboratory Course Manual. Cold Spring Harbor Laboratory Press, Cold Spring Ha 查看更多>
全球首个检测HIV耐药性的新一代测序试剂获欧盟批准用于临床 查看更多>
常见问题
蚂蚁淘所售产品均为正品吗?
蚂蚁淘的创始人兼CEO是钟定松先生,具有十年的从业经验,在业界享有良好的口碑; Ebiomall是跨境直采平台,我们直接从厂家采购,自己的团队负责国际物流和清关,中间没有第三方,蚂蚁淘承诺所售产品仅为正品,假一罚十。
下单后可以修改订单吗?
未确认状态的订单可以修改,打开“订单详情”页面,点击右上角的“修改订单”即可,若已审核确定,则订单无法修改。
商品几天可以发货?
现货产品付款审核后即可发货,大部分期货产品在3周左右即可到货,提供时必达服务的产品订单审核十天内即可发货。
订单如何取消?
如订单处于未确定状态,进入“我的订单"页面,找到要取消的订单,点击“取消订单”按钮。
可以开发票吗?
本网站所售商品都是正规清关,均开具13%正规发票,发票金额含配送费金额,另有说明的除外。
如何联系商家?
蚂蚁淘任何页面都有在线咨询功能,点击“联系客服”、“咨询”或“在线咨询”按钮,均可咨询蚂蚁淘在线客服人员, 或拨打4000-520-616,除此之外客户可在 联系我们页面找到更多的联系方式。
收到的商品少了/发错了怎么办?
同个订单购买多个商品可能会分为一个以上包裹发出,可能不会同时送达,建议查看订单详情是否是部分发货状态;如未收到,可联系在线客服或者致电4000-520-616。
退换货/维修需要多长时间?
一般情况下,退货处理周期为客户收到产品一个月内(以快递公司显示签收时间为准),包装规格、数量、品种不符,外观毁损、短缺或缺陷,请在收到货24小时内申请退换货;特殊商品以合同条款为准。
商品咨询
最主要的是技术的更新,另外还有一部分是市场的占有策略。
1,测序技术的改进:全基因组主要应用的是illumina的Hiseq X10的测序平台,该平台在图片信息处理和flowcell上都有很大的改进(原来是平板上长簇,现在上面有小孔),另外在扩增的技术上也有一点改进(RPA扩增技术)。以上几点使得数据的通量大大调高。所以相应的测序价格也会降低。
2,市场占有策略:这一点我个人理解比技术更新更重要,illumina的战略思路,占有测序市场。其实illumina的Hiseq X10的测序平台试剂要比其他平台的试剂便宜很多。不过这个平台签有协议,只能做人的全基因组重测序项目。
利用DHPLC基因扫描技术进行深入彻底的突变与SNP筛查
StanLLilleberg
变性高效液相色谱(DHPLC)是一种新型遗传变异筛查技术,可用于单碱
基替换(或单核苷酸多态性),小片段缺失或插入等多种基因突变的检测。
DHPLC基因扫描技术可在生殖细胞系和体细胞系中筛查遗传变异。而像特定位
点DNA甲基化状态的改变等遗传现象也可用在DHPLC基础上建立的方法来检
测。遗传变异的生物学效应是由突变基因的位置和特点决定的,而功能相关基
因突变的发现对相关药物的研发有很大的促进作用。本文将对DHPLC技术在
突变检测领域的应用实例进行介绍和讨论;介绍的重点分别是致病基因突变位
点的确认,以及药物代谢和耐药性相关基因突变的检测。
关键词:候选基因,变性高效液相色谱,DNA甲基化,药物代谢,抗药性,
遗传变异,基因突变,遗传药理学,SNP筛查,SNP确认,体细胞变异。
缩略词
5-FU---5-氟尿嘧啶,AD---阿尔茨海默病,早老性痴呆,APP---淀粉样前体蛋白
AS---安格尔曼综合征,快乐木偶综合征,BWS---贝-威综合征,CF---囊性纤维
化,CHF---充血性心衰,CMT---沙-马-图病,进行性神经性(腓骨)肌萎缩,
COX-2---环氧合酶-2,CP---慢性胰腺炎,DHPLC---变性高效液相色谱,DPD---
二氢嘧啶脱氢酶,EOAD---早发性阿尔茨海默病,GIST---胃肠道基质瘤,
LOAD---迟发性阿尔茨海默病,HCM---肥大性心肌病,MLST---多位点序列分
型,PCR---聚合酶链氏反应,PWS---普-威综合征,SNP---单核苷酸多态性,
TPMT---硫代嘌呤-S-甲基转移酶,VEGF---血管内皮生长因子
介绍
当今的基因技术**已为医学和制药工业的发展开辟了新的途径。基因突
变和单核苷酸多态性(SNP)等DNA序列变异的确定正在成为新药研发的重要
组成部分[1]。而许多功能基因组,临床诊断和遗传药理学研究中的重大发现也
是通过检测基因突变和SNP实现的。分子遗传学的研究将对普通临床病症的分
子水平缺陷给予更好的解释,并最终促进针对这些缺陷的新疗法的产生。而遗
传变异研究在新药开发中最有意义的作用就是为药物治疗靶点的识别,描述和
确认提供信息支持[2]。
对一种可能的药物靶点进行遗传学分析可了解目的基因发生突变的程度。
对靶序列突变的分析描述是药物开发早期工作中的关键环节,它可为药物设计
提供最合适的突变靶点。而在药物靶点的确定过程中,遗传变异也可被用来证
明特定靶点与疾病表现型之间的关联。而特定靶基因突变与临床指征或标志之
间的正性关联将会对评估该药物靶点的临床相关性以及治疗价值提供强有力的
支持。这种遗传学分析通常在靶点确定过程的早期完成,为特定药物靶点的选
择提供证据支持。
遗传变异的分析在药物研发的后续过程中也有作用。例如在遗传药理学方
面,编码药物代谢酶类的基因发生突变等遗传因素可能影响受药个体对特定药
物的反应,进而影响该个体使用该药物的有效性和安全性[3]。遗传药理学的实
验数据可在药物研发和临床用药过程中起到辅助作用。此外,药物靶点本身以
及疾病相关基因的遗传变异也可对药物的治疗结果产生影响。这些遗传变异可
以成为有力的药效指标,也可以成为临床诊断和预后的标志物[4,5]。当深入
了解了各种疾病的遗传变异机理后,人们就可制定相应的治疗策略对这些疾病
进行正确的诊断和治疗了。
由上可知,遗传变异检测的作用不仅存在于药物靶点的识别和确定阶段,
而且贯穿于整个药物的研发过程中。因此,对编码特定药物靶点,疾病通道蛋
白,药物代谢酶类和耐药性相关蛋白的基因进行扫描,以便检测对药物疗效和
毒性有影响的SNP和基因突变是很有必要的。这些基因序列的改变有可能对其
表达的蛋白质的结构和(或)功能以及表达水平具有深远的影响。
理想的突变和SNP检测技术应当具有准确性和敏感性高,完全自动化,检
测成本低等特点。此外理想的检测技术在PCR反应引物的修饰,反应试剂的搭
配,检测标记以及PCR反应后处理等方面也应没有特殊的要求。变性高效液相
色谱(DHPLC),一种能够满足上述所有要求的新兴技术,已经逐渐发展成突
变检测的首选技术。DHPLC这种准确高效的基因筛查技术的发展,极大地促进
了新的突变位点的发现,并对了解疾病发生发展机制,确定药物研发方向做出
了重要贡献。本文将对近年来利用DHPLC技术确定基因序列突变的相关报道
进行介绍,并深入探讨这些发现的生物学意义。
利用DHPLC技术检测遗传变异
DHPLC技术可以通过温度调节的异源双链分析,自动检测单碱基替换,小
片段插入和缺失等基因序列的改变。关于DHPLC技术的工作原理和应用范围,
在Xiao和Oefner的综述[6]中有详尽的介绍。DHPLC基因突变筛查,就是利用
离子对反向液相色谱技术,通过独特的DNA分离基质,对特定的PCR反应产物
进行分离(图1)。在待测样品部分变性和乙晴冲洗梯度呈线性增加的情况下,
带有突变序列的异源双链,与同源双链(野生型或阴性对照)相比,它们的柱保
留时间相对较短。因此,带有突变序列的样品呈现出异源和同源双链混合物的
峰型特点,而不含突变序列的样品则只有同源双链的峰型。出现与野生型或阴
性对照不同的DHPLC冲洗结果,说明检测样品含有突变序列。DHPLC技术为
确定带有突变序列的样品提供了一种简便而直观的途径,该种方法对生殖细胞
系和体细胞系的基因突变检测同样适用。
图一
图2展示了利用DHPLC技术检测DNA序列变异,以及通过测序技术确定
特定的碱基改变的过程。整个实验流程非常简便。首先从合适的来源分离DNA
和RNA,然后通过PCR或RT-PCR(模板为RNA)反应,扩增目的基因的特
定区域(即扩增子),扩增子一般包括一个外显子以及相应的外显子/内含子连接
区,
也有的扩增子包括启动子区域,或5’/3’非编码区域。在PCR反应之后,可直接
利用DHPLC技术对扩增子进行分析,无需再对PCR产物进行预处理。利用自
动化的DHPLC分离方法,目的扩增子可被彻底地扫描。最后如果DHPLC识别
出含有突变的扩增子,那么就要用测序的方法来确定其突变类型,DHPLC检测
结果没有改变的扩增子无需再进行测序。DHPLC突变检测技术的另一个优点是
可以收集异源双链部分。这些部分含有等量的野生型和突变型等位基因,可为
接下来利用测序方法确定突变类型提供便利。由于在测序前进行DHPLC筛查,
突变检测的总体效率和敏感性得到了大幅度的提高。本文将列举多篇利用
DHPLC技术对生殖细胞系和体细胞系进行突变检测的报道。更多的DHPLC相
关文献可在下面的两个网址中找到:http://www.transgenomic.com
http://insertion.standford.edu前者可通过目的基因和疾病来搜索DHPLC相关
文献,而后者是由Standford基因组技术中心(USA)提供的。
图二:
DHPLC突变检测技术的准确性
迄今为止,用于筛查疾病相关基因突变的方法有很多种。它们包括:单链
构象多态性(SSCP),构象敏感性凝胶电泳(CSGE),变性梯度凝胶电泳
(DGGE),双相基因扫描(TDGS),直接DNA测序,基因芯片分析技术等。
在过去几年中陆续有报道指出,DHPLC突变检测技术与其它方法相比,具有更
高的准确性和敏感性[6]。
最近有一项盲性研究,通过对BRCA1基因进行突变筛查,将DHPLC和其
它方法的准确性进行了比较[7]。结果只有DHPLC技术从65个样本中检测到了
全部58种突变,检测结果与测序结果完全相符。这58种突变包括38种单碱基
替换,16种碱基缺失,3种碱基插入和1种插入,缺失复合突变。这项研究证
明了DHPLC技术发现各种基因突变的能力。最重要的是这些突变中的40(71%)
种是以前从未被报道过的,有可能逃脱了其它基因分型诊断方法的检测。这项
研究结果为采用DHPLC技术作为分子诊断方法提供了有力的支持。在另外一
项对整个囊性纤维化(CF)基因(CFTR)的筛查中,DHPLC技术对73个CF
病人的全部CFTR突变的检出率为100%[8]。另外还有一些研究结果表明
DHPLC技术的突变检测准确率达到或接近100%。这些受检基因包括:X-连锁
眼白化病(OA1),威尔逊病(ATP7B),家族性腺瘤息肉病(APC),家族性癌
症综合征(PTEN,RET,VHL),常染色体显性多囊性肾病(PKD1,PKD2),血
友病A(因子Ⅷ),家族性高胆固醇血症(LDLR),黑色素瘤(INK4A),和退行
性非综合征式遗传性耳聋(GJB2)等。表1中所罗列的是最近利用DHPLC筛
查突变的基因。Stanford基因组技术中心的网址
http://insertion.stanford.edu/dhplc_genes1.html,提供全部或部分利用DHPLC
筛查突变的基因列表,并提供相关疾病和引用文献的介绍。
DHPLC技术最适于对含有大量外显子的基因,以及多基因疾病相关基因进
行突变筛查。这些基因及其相关疾病的例子可在表1中找到,而更加全面的介
绍可在www.mutationdiscovery.com中找到。该网站对遗传突变研究者们免费
提供超过8600个人类基因的基因组DNA序列,以及在这些基因中已检测到的
突变信息。在这些信息基础上,该网站还提供用于筛查这些突变的PCR和
DHPLC的实验方案。
遗传异质性在很多复杂疾病中具有重要的意义,而DHPLC技术是研究遗
传异质性疾病相关基因突变的理想方法。一项关于沙-马-图病(进行性神经性腓
骨肌萎缩)(CMT)相关基因突变的研究报道是对上述观点的最完整的阐述[9]。
作者将利用DHPLC技术对168个CMT患者进行的基因(PMP22,MPZ,GJB1,
EGR2)筛查结果与直接测序的结果进行了比较。所有以前报道过的突变DHPLC
无一漏筛,而DHPLC检测出的某些新突变连测序技术都无法检测出。为了确
定这些新突变,作者通过收集DHPLC异源双链部分,加大了样品中突变等位
基因的含量,从而通过测序确定了突变类型。对于某些多表型疾病,如感觉神
经性耳聋,色素性视网膜炎和外周神经疾病等,DHPLC技术也是一种理想的方
法,因为它们都有大量的疾病相关位点需要进行基因突变筛查。
DHPLC突变检测技术的敏感性:
体细胞基因突变
直到不久以前,直接测序仍然被认为是突变检测的“金标准”。然而现在
基因突变频率低于20%就很难用测序方法检测到,这已是公认的事实[10]。
DHPLC技术是通过区分同源和异源双链来进行突变检测的。这种方法与直接
DNA测序相比更有利于突变等位基因的识别(图1)。已有文献报道DHPLC技术
可从待检样品中检测到占总基因量0.5-5%的突变等位基因,且实验重现性很好
[11,12,13,14]。近来有两篇报道表明DHPLC技术可从发生低水平体细胞遗
传镶嵌现象的结节状硬化患者标本中检测到TSC1和TSC2基因突变,而该种突
变用测序法完全检测不到[11,12]。更深入的研究表明这种基因突变存在于
6-15%的患者的外周血淋巴细胞中。
体细胞遗传镶嵌现象指的是在一个特定器官中出现具有不同遗传性状的多
个体细胞群落。这种现象可由DNA突变,DNA的修饰性改变,染色体异常或
自发性遗传突变逆转等因素引起。这种现象含有孟德尔式和非孟德尔式基因异
常,而它最典型的例子就存在于癌症的发生过程中。Youssoufian和Pyeritz在他
们的文章中对这种遗传镶嵌现象进行了详尽的总结[15]。漏筛这种遗传镶嵌现
象所造成的突变会导致基因突变发生频率的报告不准确,也会使遗传诊断发生
疏漏。而这种现象的筛查对检测肿瘤组织中的体细胞基因突变和异种组织线粒
体DNA中的致病基因突变也是非常重要的。近来有报道表明利用DHPLC技术
可从白血病患者P53基因的外显子中筛查出突变频率低于3%的基因突变[13]。
而在一项利用DHPLC技术对整个线粒体基因组进行突变筛查的研究中,频率
高于0.5%的突变都可被检出[14]。还有许多检测各种肿瘤癌基因突变的文献报
道也对DHPLC技术的敏感性给予了肯定,其中一些研究内容请见表2。
虽然肿瘤是一种遗传病这种观点早已是公认的事实,但特定的DNA遗传改
变和抗癌药物疗效之间存在关联才刚刚被认识到。未知突变的检测对于了解上
述的关联至关重要,而DHPLC正是实现这个目的合适的技术。例如在对肿瘤
发病机制的研究中,在新发现的基因中寻找突变非常重要。Lipkin在文章[16]
中报道利用DHPLC技术,发现一种新的DNA错配修复基因MLH3在25%的
受检结肠癌患者样品中发生了基因突变,而此前的两项利用其它敏感性和准确
性都较低的方法进行的研究都认为MLH3与结肠癌易感性无关。由此可见,
DHPLC技术的
敏感性和准确性确实拥有较大的优势。而Smith在他的文献[17]中报道了利用
DHPLC技术对已知和未知的疾病相关基因进行突变筛查的情况。在这项研究
中,DHPLC技术被用来筛查绝大部分APC和P53基因,因为突变有可能分散
在这些基因中。实验结果表明DHPLC技术作为一种基因突变预筛手段,可以
极大地提高测序的效率。
利用DHPLC技术分析DNA甲基化
DNA修饰性因素(如DNA甲基化等)在基因表达调控中的作用非常重要。
许多看家基因和超过40%的组织特异性基因在他们的启动子区域拥有CpG岛结
构,该结构很容易发生甲基化,从而对基因转录调控产生影响[18,19]。这些
CpG岛结构在发生DNA修饰后,对DNA编码的具体影响还有待证明;但DNA
甲基化与基因沉默之间的确存在关联,这一点可从大多数受测基因(约80%)
中得到证实[20]。而余下的20%受检基因在甲基化后表达水平增强,这些基因都
在第一个内含子或编码区域中含有CpG岛结构。
关于DNA修饰性因素参与癌症发生和发展的证据越来越多,而启动子甲基
化确实对许多肿瘤抑制基因的转录产生负性影响[21]。DNA修饰也与其它许多疾
病有关,例如BWS[22],PWS[23],AS[22]等综合征。环境因素对DNA甲基化有
直接的影响,例如维生素B12缺乏会引起叶酸代谢紊乱,以及DNA甲基化状态的
改变,而在肿瘤组织中维生素水平也会影响DNA甲基化状态[25]。因此检测CpG
岛甲基化对我们了解基因调控与疾病发生发展的关系非常重要。
了解特定疾病过程中甲基化状态的重要性极大地促进了精确描述和量化
DNA甲基化的实验方法的发展。一些常规的甲基化检测方法,如DNA测序,以及
其它基于凝胶和PCR技术的甲基化检测方法,都是费时费力,不适于进行大样
本实验。
而最近有些的报道表明利用DHPLC技术进行甲基化检测可以避免重蹈其它方法
的覆辙[26,27,28,29,30]。
Deng在他的文章[26]中介绍了一种PCR扩增亚硫酸盐修饰的CpG岛,然
后利用DHPLC技术同时检测扩增产物中的CpG岛甲基化和SNP的方法,并用这
种方法对多种细胞系和胃癌细胞系中hMLH1启动子,以及环氧化酶2(COX2)
启动子的甲基化状态进行了检测[26]。这种亚硫酸盐-DHPLC技术可对纯合与杂合
样本中的同源与异源CpG岛结构进行快速的甲基化和SNP检测和定量。这种方
法的另一个优点是在扩增片段中同时检测出CpG位点和SNP。两项相似的实验
都使用甲基化特异性PCR和DHPLC技术来分析三种人类印记基因的甲基化状态,
这三种基因分别是:AS和PWS相关的SNRPN基因,以及BWS相关的LIT1和H19
基因[27,28]。利用这项技术可以在患有PWS婴儿的样品中检测到低水平的细
胞镶嵌现象,这充分证明了该项技术的敏感性[27]。这种变异水平很低的细胞
系(血中低于8%)
用传统的分子生物学方法根本无法检测到。而这种检测低水平细胞镶嵌的能力
对于以遗传镶嵌作为部分显型表现的各种孟德尔和非孟德尔式遗传疾病的临床
诊断和预后有着重要的意义[15]。
另外一种基于DHPLC技术的方法也被用来检测特定位点的CpG岛甲基化
[29,30]。这种方法利用亚硫酸盐处理的基因组DNA的PCR产物,将单核苷酸
引物延伸与DHPLC分离技术相结合,来区分甲基化和非甲基化的CpG岛。而有
些CpG位点是在对引物延伸产物进行多链化之后再进行分析的。利用DHPLC技
术可对特定CpG位点的甲基化进行量化分析。而对于已经明确甲基化对基因调
控影响的特定序列,使用DHPLC技术对其进行分析是非常合适的。
DHPLC在SNP发现和确定研究中的应用
候选基因筛查
人类基因组中众多的DNA多态性以及SNP对基因功能的影响决定了深入
了解候选效应蛋白的遗传变异状况是非常必要的。在构建一个候选疾病基因的
遗传变异图谱时,首先用经典方法确定一个低分辨率的遗传位点,接下来再根
据参照样品(野生型)和各种受检样品建立一个高分辨率的SNP图谱[31]。为
了实现上述目标应该在目的基因区域确定SNP的位置和类型,这需要PCR扩增
基因组DNA,并进行测序分析。但是SNP的实质只是对功能相关研究很重要,
而并非是构建遗传图谱的关键。DHPLC突变筛查技术很好地适应了遗传变异研
究的这一特点,它只检测DNA序列差异,并不确定差异的实质。
利用DHPLC-SNP筛查技术来确定一个功能基因可以采取两种途径[32]。
第一种方法,收集大量的候选疾病基因的样品,然后利用DHPLC对可能发生
功能性SNP的编码序列进行筛查。这种方法的前提是与一种遗传病表现型相关
的基因中应有一个或多个疾病相关的突变位点,因此致病基因突变也应相对频
繁地出现在有相应的疾病表现型的样品中。而上述方法对筛查序列的限制也会
导致漏筛位于非编码调节区域的序列变异。在第二种相对全面的方法中,一个
基因的全基因组序列被系统地进行突变筛查。这样做的优点是在样本量充足的
情况下,漏筛功能性多态的几率较小。上述两种基于DHPLC的方法都能极大
程度上降低SNP筛查的工作量,进而对人类疾病相关遗传位点的构图产生重要
的影响。下面将简要介绍几篇利用DHPLC技术进行SNP筛查的文献报道。
充血性心衰
Lynch和他的同事们在文章[33]中表示充血性心衰(CHF)相关的G蛋白和
下游信号传导通路蛋白的遗传变异信息存在极大的缺陷。在这项研究中,他们
检测了编码信号传导蛋白的基因,以确定新发现的和已报道的SNP的发生频率。
通过DHPLC和确证性双链DNA测序的方法,他们筛查了96-144个CHF病人
的9个主要信号传导基因的56个编码外显子,并且发现了17个新的和8个报
道过的同义SNP,以及一个新的非同义SNP。由于对NCBI和Celera数据库最
初的实验中漏筛了多个SNP很感兴趣,他们又检测了10个已报道过的非同义
SNP,结果在74-91个CHF病人样品中并未发现这些SNP。他们将实验结果与
NCBI和Celera的数据进行比较,发现数据库中56%的SNP并未在他们的样品
中发现,而实验中发现的SNP中的69%并不存在于数据库中。这项研究表明绝
对性地将现有数据库作为多态标记的来源,并只使用这些标记物会导致错误的
实验结果。另外一项最新的研究[34]表明SNP数据库中关于25个G蛋白耦连受
体的数据只有32%能在样本量为60的实验中被确证。这说明利用DHPLC对现
有数据库中的SNP数据进行确证是一种在更大规模实验前对标志物进行评估的
可靠方法。
神经精神疾病
基因编码区的SNP可被用来做关联实验,以确定复杂疾病的遗传基础[35,
36]。而这种实验的成功与否极大程度上取决于疾病相关等位基因的频率以及它
们在不同种族人群中的分布[37]。如果待测序列的高危等位基因频率很低,那么
直接确定突变序列基因型的方法就不适用了。以往对基因的分析表明大多数基
因突变频率很低(<0.05),而且低于75的样本量也会限制检测稀少等位基因的
能力[38]。最近有文献[39]介绍了一项研究,利用DHPLC对神经精神疾病相关
的两个基因的编码区和剪接结合部的突变序列(频率很低)进行大样本量筛查
(n=450)。结果表明这两种基因,SLC6A4(编码5-羟色胺转运蛋白)和SLC18A2
(编码血管单胺转运蛋白),在等位基因变异的数目和频率方面存在明显的差
异。如果将这样的变异基因比较扩展到更大范围的基因中去,那么就有可能确
定特定形式的遗传变异与基因功能之间的关联。
阿尔茨海默病
阿尔茨海默病(AD)是一种渐进性神经退行性病变,它是由复杂的遗传和环
境因素共同造成的。一项成功的SNP研究确定载脂蛋白E(APOE)基因(等
位基因4)是一个易感性位点,可能增大迟发性阿尔茨海默病(LOAD)的发病
几率[40]。到目前为止,这是唯一的被证实的LOAD易感性标志。一项最近的
研究对位于12号染色体的编码氧化低密度脂蛋白(LDL)受体1(OLR1)的基
因进行分析[41]。研究者利用DHPLC对50名AD患者的全部OLR1外显子和
内含子/外显子交界部位进行了突变序列筛查。结果有三种新的遗传变异被鉴别
出来,它们全部位于非编码区域。在对超过800个LOAD病例的基因型分析表
明上述的SNP与AD之间存在明显的关联,其中最重要的是位于非APOE4区
域的3’-UTRSNP。关于遗传变异对早发性阿尔茨海默病(EOAD)和LOAD已
有大量报道(见阿尔茨海默病突变数据库
http://molgen-www.uia.ac.be/ADMutations/)。
例如编码淀粉样前体蛋白的基因(APP)和编码早老素的基因(PSEN1,PSEN2)
发生突变会通过改变γ-分泌酶活性一起少见的早发性阿尔茨海默病(EOAD)。
近来一种名为nicastrin(NCSTN)的跨膜糖蛋白被确定是γ-分泌酶复合物的一部
分,而后者可切割淀粉样前体蛋白(APP)[42]。NCSTN被定位于1q23,一个
与LOAD相关的区域。近来有一项研究利用DHPLC对两名荷兰的EOAD或
LOAD患者进行了NCSTN基因突变检测[43]。结果在NCSTN基因中发现了14
种新的SNP,其中之一可能能增大EOAD的发病几率。
心脏病
近来有大量的研究通过对突变序列的鉴别研究各种心脏疾病的相关基因。
家族性肥大性心肌病(HCM)是一种常见的常染色体遗传病,病变部位为心肌
小节。在9种编码肌小节蛋白的基因中发现的突变已经证明与HCM相关[44]。
最常见的突变基因是编码β-肌球蛋白重链的MYH7基因,而功能相关性突变发
生在编码区域的5’端部分。近来有研究利用DHPLC技术来筛查MYH7基因编
码酶解肌球蛋白轻链(LMM)的编码区3’端部分。结果研究者发现了破坏MYH7
基因功能的突变[45],这说明只有进行全基因突变筛查才能保证正确的诊断。另
外超过1/3的HCM病例没有发现任何突变,无论是在已知的肌小节基因,还是
在与心脏能量稳态相关的其他基因中,结果都一样。利用DHPLC技术对重症
HCM家系的编码AMP依赖蛋白激酶的γ2亚基的PRKAG2基因进行的突变筛
查证明能量耗竭是心肌功能失常的主要成因[46]。近来对HCM致病基因的遗传
异质性的深入研究[44,47]表明扩大对HCM的遗传检测是非常有必要的。
近来还有许多关于其他心肌疾病的候选基因筛查研究。如对位于1q42-q43
的一些疾病相关基因进行DHPLC突变筛查[48]。结果在一个患有致心律失常性
右心室心肌病2(ARVD2)的家系中发现了一种编码心脏ryanodine受体(RYR2)
的基因突变。这些突变的识别为进行症前诊断提供了一个标志物,也为早期监
测和治疗干预提供了机会。这些发现也有可能促成更特异有效的药物干预。
自身免疫病和炎症
另一个焦点研究领域是筛查自身免疫病和炎症相关的基因突变。利用
DHPLC技术,研究者已识别出了多种致病基因突变如PAPA综合征(脓性无菌
性关节炎,坏疽性脓皮病和粉刺),和家族性复发性关节炎(FRA)(一种主要
影响皮肤和关节组织的早发性遗传病)的致病基因突变[49]。而研究者指出这
些突变影响了正常炎症反应的信号传导通路,因此这类自身免疫病有可能与普
通的炎症性疾病如风湿性关节炎,炎性肠病等有相同或相似的病因。利用
DHPLC技术,研究者也在编码胸腺特异性丝氨酸蛋白酶(PRSS16)的基因中
发现了一些SNP,这些基因变异位于HLA复合体中,后者包含有多种免疫疾病
的相关基因[50]。这些基因突变中的一部分有生物学作用,有必要深入研究它们
的疾病相关性(如与糖尿病的关联)。
蛋白水解酶和它们的抑制剂在维持免疫系统稳态过程中发挥重要的作用。
因此这些蛋白的突变形式有可能产生显著的生物学后果。利用DHPLC技术,
研究者在编码丝氨酸蛋白酶抑制物Kazal-5蛋白(LEKT1)的SPINK5基因中
发现了一组突变,而这种基因是一种常染色体隐性遗传皮肤病Netherton综合征
的缺陷基因[51]。LEKT1是第一个被发现参与免疫疾病的丝氨酸蛋白酶抑制物。
现已发现许多编码与LEKT1类似的丝氨酸蛋白酶抑制物和激活物的基因突变
与疾病相关,如Kazal-1胰蛋白酶抑制物与慢性胰腺炎(CP),以及组织蛋白酶
C与牙周疾病等。
CP是一种严重时可能危害生命的疾病。在过去的几年中,已有三种基因被
发现与CP有关,它们是CFTR,PRSS1和PST1[52]。近来有一项研究利用
DHPLC技术在39个病人中对上述三种基因的整个编码区域和剪接结合部位进
行突变状况的筛查[53]。结果表明约30%的受检者至少有一种基因发生一种突
变。但这不包括新发现的不普遍的基因突变,而这些突变中的一些还有可能具
有功能意义。只有三个病人至少有两种基因中发生了突变。这些少见的病例表
明在CP易感性位点之间存在某种关联。这项研究也提供了一次对一种常见疾病
的不同基因突变的杂合状态进行研究的独特机会。
遗传变异研究在临床治疗中的意义
药物代谢和耐药性
遗传药理学是一种研究基因在个体对药物治疗和环境因素的生物学反应中
所起作用的学科。不同个体对药物反应存在固有的差异,一些常用药物在几种
重要疾病中的作用请见表3[54]。个体对药物的反应直接受个体的基因型和生活
形式的影响。确定个体的基因突变类型无论对科学家或临床医生来说都是一项
艰巨的任务。但是这种研究却可以区别可能与不可能发生药物反应的患者,以
及识别那些可能发生严重反应的高危患者。因此无论从用药的有效性或安全性
来说,对患者进行遗传实验,以预测他对一种特殊药物的反应十分有必要。这
种研究对将带有特定遗传药理学标记的患者分组进行临床实验也有很大的帮
助。
编码细胞色素,甲基转移酶等代谢酶类的基因多态性对药物反应有显著的
影响。这些酶类参与细胞对药物的吸收,分布,降解和清除等活动。因此确定
影响药物代谢的突变等位基因可以帮助临床医生预测患者对治疗的反应。
DPYD
一项介绍DHPLC技术筛查编码二氢嘧啶脱氢酶(DPD)的基因DYPD的
报道证明了识别突变等位基因的遗传药理学价值[55]。这种酶可以催化抗癌药物
5-氟尿嘧啶(5-FU)代谢的限速步骤。DPD缺乏会导致5-FU用药后的严重毒性,
因此在使用5-FU进行化疗之前,确定癌症患者的DPD遗传状态具有重要的价
值。然而DYPD基因的复杂性和大小(23个外显子,150-950kbp)使许多研究
者对研究DPD缺乏的遗传基础望而却步。一项利用DHPLC技术对上述基因的
筛查研究检测到全部21个以前有报道的基因突变,并且鉴别出了纯合与杂合基
因型,证明DHPLC是一种能够准确,敏感,低消耗地检测具有重要临床意义
的基因突变的方法。DHPLC的所有这些特点对于以复杂基因(如DYPD)突变
筛查为目的的病人或自然人群研究是非常合适的
编码TPMT的基因
巯基嘌呤S-甲基转移酶(TPMT)是一种位于细胞质,催化巯基嘌呤S-甲
基化的酶类。巯基嘌呤是一种免疫抑制剂,可被用来治疗急性淋巴细胞白血病
以及风湿性关节炎[56]。编码TPMT的基因多态性对巯基嘌呤的代谢有严重的
影响,目前已有10种影响表型的突变等位基因被识别出来[57]。一种利用
DHPLC快速筛查TPMT相关突变的临床检测方法已经形成[58]。在一项相关研
究中,有98份来自于正在接受或接受过巯基嘌呤治疗的人群的DNA样品被用
来筛查TPMT突变。通过直接测序证实,DHPLC可以鉴别出样品中全部(100%)
突变等位基因。DHPLC对TPMT相关突变的评估是建立在清晰的洗脱结果基
础上的。如果拥有一套参照数据,DHPLC的洗脱结果可被用来预测序列突变的
类型[59]。可见DHPLC这种自动技术可被临床实验室用来确定TPMT等基因
突变的基因型,以及筛查新的突变。
Imatinib
对从事药物研发基础研究的工作者来说,DHPLC是一种有价值的辅助工具。
例如近来有研究表明在对白血病患者的治疗过程中,BCR-ABL激酶激活位点的
基因区域的多种突变对酪氨酸激酶抑制剂Imatinib的耐药性有影响[60]。这项重
要的发现对于确定需要改变治疗策略的耐药性水平有重大意义。Imatinib的其它
目标以及酪氨酸激酶抑制剂的其它作用对象的耐药性机制可能与上述研究结果
相似。最近有一项研究利用DHPLC技术对Imatinib的一个作用对象c-kit进行
了突变筛查[61]。研究结果显示不同时期的胃肠道基质瘤(GIST)都有c-kit基
因突变。这些突变在早期良性的胃肠道基质瘤中存在率较高,这说明c-kit在早
期GIST发展中起作用。重要的是,这些带有突变的GIST类型已被加入了
Imatinib的适用范围中。虽然c-kit并不是GIST由良性转向恶性的标志,但它
却是有用的耐药性指标。可见准确而敏感的对酪氨酸激酶基因靶点的突变研究
能够在不存在类似耐药性的新型抗癌药物研发过程中起到辅助的作用。
VEGF
参与血管生成的基因也是目前深入研究的重要药物靶点。人类血管内皮生
长因子(VEGF)由肿瘤细胞分泌,以自分泌的形式作用于内皮细胞。最近有人
对人类结肠直肠癌中VEGF的基因突变情况进行了研究[62]。结果发现了4个剪
接结合部变异位点和6个新的基因突变。这些突变可能在肿瘤-宿主反应的生物
多样性方面具有重要影响,也可能对药物靶点研究很有价值。
上面这些文献报道为识别和确定与发病危险性,药物反应和耐药性相关的
基因变异提供了理论和应用的介绍。而分析标志等位基因(基因型)和临床特
征(表现型)之间的关系对治疗策略的制定有重要的意义。相信在不久的将来,
对临床相关基因突变的准确识别能帮助医务工作者制定针对每个病人的独特治
疗方案,从而提高对疾病的治疗和控制水平。
总之,近几年来,DHPLC技术飞速发展,利用DHPLC对大量的疾病相关
基因突变进行筛查,如下表:
Table1.Recentgenesassociatedwithinheriteddisordersscannedformutationsby
DHPLC.Transgenomic
GeneMIM
number1
ExonsDiseaseReference
ABCA4(ABCR)60169150Maculardegeneration〔71〕
ADRB2109690Intron-lessAsthma;chronicobstructivepulmonarydisease;
CHF
〔33··,72〕
ALAP145500-Essentialhypertension〔73〕
ALG3601110-Congenitaldisorderofglycosylation〔74〕
ALG6604566-Congenitaldisorderofglycosylation〔74〕
APM16054413TypeIIdiabetes〔75〕
APOD1077405Cardiovascular;lipidmetabolism〔76〕
ATPB760688221Wilson’sdisease〔77〕
CFTR(ABCC7)60242127CF;idiopathicCP〔8·,53,78,79〕
CHAC20015073Chorea-acanthocytosis〔80〕
CHX101429935Microphthalmia;anophthalmia〔81〕
CLCN111842523Myotonia〔82〕
CRB160421011Lebercongenitalamaurosis〔83〕
CRX6022253Lebercongenitalamaurosis〔83〕
CPM16035039Congenitaldisorderofglycosylation〔74〕
DPYD274270235-FUtoxicity〔55··〕
DRD21264507CMTdisease〔84〕
DRD31264518Schizophrenia〔85〕
EGR21290102CMTdisease〔9··〕
F8C(FactorVIII)30670024HemophiliaA〔86,87〕
FBN113479765Marfansyndromeandrelatedconnectivetissue
disorders
〔88,89〕
GAD213827517TypeIdiabetes〔90〕
GJB13040402CMTdisease〔9··〕
GJB21210112Hereditaryhearingloss〔91,92〕
GNA111393133CHF〔33··〕
GNAQ600998Intron-lessCHF〔33··〕
GNAS13932013CHF〔33··〕
GeneMIM
number1
ExonsDiseaseReference
GRIN113824921Schizophrenia〔93〕
GRIN2A13825314Schizophrenia〔93〕
GRIN2B13825213Schizophrenia〔93〕
GRIN2C13825413Schizophrenia〔93〕
GRIN2D60271713Schizophrenia〔93〕
HBB1419003?-Thalassemia〔94,95〕
HFE2352007Hereditaryhemochromatosis〔96〕
HPRP3601850-Autosomaldominantretinitispigmentosa〔97〕
K91442006Epidermolyticpalmoplantarkeratoderma〔98〕
KCNE11762613CongenitallongQTsyndrome(LQTS)〔99〕
KCNE26037961CongenitalLQTS〔99〕
KCNH215242715CongenitalLQTS〔99〕
KCNJ106022082TypeIIdiabetes〔100〕
KCNQ119250016CongenitalLQTS〔99〕
KvLQT1220400-JervellandLange-Nielsensyndrome(JLSN1)〔101〕
LDLR14389018Familialhypercholesterolemia〔102,103〕
LHCGR15279011Leydigcellhypoplasia〔104〕
LIPC1516709Coronaryarterydisease〔105〕
LPL23860010Coronaryatheroscleroticheartdisease〔105〕
MAG15946012Multiplesclerosis〔106〕
MAPK11769488CHF〔33··〕
MC4R155541Intron-lessEarly-onsetobesity〔107〕
MIF1536203Systemic-onsetjuvenileidiopathicarthritis〔108〕
MLC160590812Schizophrenia〔109〕
MPI154550-Congenitaldisorderofglycosylation〔74〕
MPDU16040417Congenitaldisorderofglycosylation〔74〕
MTM131040015X-Linkedmyotubularmyopathy〔110〕
MYH716076039FamilialHCM〔44,45〕
MYOC6016523Openangleglaucoma;ocularhypertension〔111〕
NAB16008007Peripheralneuropathy〔112〕
NAB26023817Peripheralneuropathy〔112〕
NCSTN60525417AD〔43〕
NTF3162660-Schizophrenia〔113〕
OA13005009X-Linkedocularalbinism〔114〕
OPRM16000183Heroinaddiction;idiopathicgeneralizedepilepsy〔115,116〕
PAX610621014Microphthalmia;anophthalmia;coloboma〔81〕
PCDH86035803Schizophrenia〔117〕
PKD16013134Autosomaldominantpolycystickidneydisease
(PKD)
〔118〕
PKD217391015AutosomaldominantPKD〔118〕
PKHD160670267AutosomaldominantPKD〔119,120〕
PMM26010978Carbohydrate-deficientglycoproteinsyndrometype
1A
〔74〕
PMP226010973CMTdisease〔9··〕
PRSS12760005Hereditarypancreatitis;idiopathicCP〔53〕
PRSS1660716912Autoimmunity〔50〕
PTPN1117687614Noonansyndrome;:ROPARDsyndrome;
Cardiofaciocutaneoussyndrome
〔121,122〕
RAB3A1794905CHF〔33··〕
RAB41795118CHF〔33··〕
RAB5C6040375CHF〔33··〕
RAD1795038CHF〔33··〕
RPE6518006914Lebercongenitalamaurosis〔83〕
RPGRIP160544615Lebercongenitalamaurosis〔83〕
SIX36037142Microphthalmia;anophthalmia;coloboma〔81〕
SLC6A418213813Anxietydisorders〔39··〕
SMN16003548Spinalmuscularatrophy〔123〕
SPINK11677904IdiopathicCP〔53〕
SPINK560501028Nethertonsyndrome〔51〕
SUOX2723003Sulfocysteinuria〔124〕
TGM219019613Maturith-onsetdiabetes(MODY)〔125〕
TNFRSF1A19119010Tumornecrosisfactorreceptor-associatedperiodic
syndrome
〔126〕
TSC160528421Tuberoussclerosis〔11·,127〕
TSC219109241Tuberoussclerosis〔11·,12·,127〕
VHL1933003Hippel-Lindaudisease〔128〕
WFS16062018Wolframsyndrome〔129〕
Table2.CancergenesrecentlyscannedformutationsbyDHPLC.Transgenomic
GeneMIM
number1
ExonsDiseaseReference
APC17510015Colorectalcancer〔17··,130-133〕
ATM20890062Hereditary,sporADIcbreastandovariancancer〔134〕
AXIN160381610Hepatocellularcarcinoma〔135〕
AXIN26040252Hepatocellularcarcinoma〔135〕
BRCA111370523Hereditarybreastandovariancancer〔7·,136,137〕
BRCA260018528Hereditarybreastandovariancancer;sporadic
exocrinepancreaticcancer
〔136-138〕
CDH119209016Hereditaryprostatecancer;sporadicductaland
lobularbreastcancer
〔139,140〕
CTNNB111680616Uvealmelanoma;hepatocellularcarcinoma〔135,141〕
DBC2--Breastcancer〔142〕
ELA2(NE)1301305Lungcancer〔143〕
FAM10A4606796-B-cellchroniclymphocytesleukemia〔144〕
?-GCS--Lungcancer〔145〕
GSTP11346607Lungcancer〔145〕
GSTM11383508Lungcancer〔145〕
GSTT16004365Lungcancer〔145〕
INK4A6001603Melanoma〔146〕
KIT60676421GISTs〔61··〕
K-ras6015996Colorectalcancer〔17··〕
MET16486021Papillaryrenalcarcinomas〔147〕
MLH112043619Hereditarynonpolyposiscolorectalcancer;
endometrialcaricinoma
〔148,149〕
MLH360439513Colorectalcancer〔16·〕
MSH212043516Hereditarynonpolyposiscolorectalcancer;
endometrialcaricinoma
〔148,149〕
MUTYH60493316Hereditarynonpolyposiscolorectalcancer〔132,133〕
MYO18BLungcancer〔150〕
NBS160266716Acutelymphoblasticleukemia;colorectal
carcinoma
〔151〕
P14(ARF)6001603Uvealmelanoma〔141〕
P15(INK4B)6001603Uvealmelanoma〔141〕
P16(INK4A)6001603Uvealmelanoma〔141〕
PTEN/MMAC16017289Endometrialcarcinoma;neuroblastoma〔148〕
RNASEL1804356Prostatecancer〔152〕
SMAD460701013Uvealmelanoma;pancreaticcancer〔141〕
TGFBR21901827Uvealmelanoma〔141〕
TP53(p53)19117011Variouscancers〔13,17··,141〕
耐药性相关基因突变的微生物学识别和检测
随着耐药性微生物的大量出现,针对传染性病原体的治疗策略制定和药物
研发变得越来越难。抗微生物治疗面临挑战的一个重要原因就是缺乏能够准确
识别致病微生物和耐药基因的有效临床手段。然而近来发展起来的能识别病原
体和研究微生物抗药性的分子生物学方法又为抗微生物治疗和药物研发建立了
希望。下面将对利用DHPLC技术,成功识别致病细菌以及细菌耐药性基因突
变的研究进行简要的总结。
从临床治疗的角度来看,准确确定致病微生物的种类具有重要的价值,它
可以保证用药的有效性。Hurtle在他的文章[63]中指出DHPLC技术能有效的识
别病原微生物。作者利用万能PCR引物从多种细菌的转录16S核糖体RNA的
基因中产生出一条320-bp的扩增片段。将这些来自不同种类细菌的扩增产物与
参照物混和后进行DHPLC检测,会产生一个独特的色谱结果。而该结果可以
作为鉴定细菌种类的分子指纹。
在一场大范围疫情爆发中,从菌株水平确定病原菌是至关重要的。只有了
解了致病菌株才能正确选择抗菌药物。Shlush等指出将PCR,DHPLC和多位点
序列分型(MLST)技术相结合可以从菌株水平识别病原菌[64]。MLST技术利
用位于非连锁位点的管家基因来进行微生物分型[65]。研究人员PCR扩增管家
基因区域,并将扩增产物与对照物混和。通过DHPLC检测,产生每个管家基
因的特定的色谱结果[64]。实际上DHPLC的分析能力在没有测序的情况下远远
超过MLST。
对已知和未知的耐药性基因突变的检测对于评估现有和新开发的抗生药物
至关重要。而DHPLC可以准确地检测耐药性相关基因突变。一项筛查肠炎沙
门菌抗quinolonegyrA基因突变的研究[66]表明,在准确性方面,DHPLC远远
超过了其它检测单碱基突变的分子生物学方法,如单链构象多态性,和轻环
PCR-gyrA杂交突变检测技术(GAMA)等。Hannachi-M’Zali也在文章中[67]指
出DHPLC是检测甲氧西林耐受的金黄色葡萄球菌的抗quinolonegyrA,gyrB,
grlA和grlB基因突变的有效方法。而Cooksey则利用DHPLC技术建立了抗结
核药耐受性相关基因突变筛查的常规方法[68]。上面的研究表明将DHPLC与其
它分子生物学方法结合使用,可以了解引起耐药性的基因突变,从而促进特异
性药物的研发。
DHPLC技术在微生物学研究中的应用并不仅限于细菌相关的工作。它也可
被用在真菌,病毒和寄生虫等研究领域,以识别微生物和检测抗药基因突变。
使用DHPLC技术对抗生药物的研发由三点益处。第一,DHPLC技术可以可靠
地从种属和菌株水平识别微生物,弥补传统的表型识别方法的缺陷。第二,
DHPLC技术可以高度准确地检测耐药基因突变。第三,DHPLC技术具有从混
合微生物群落中识别突变种类的能力。从异源混合物中检测遗传突变基因对于
监测感染过程中病原微生物耐药性的变化至关重要。上述观点的一个重要例证
是人免疫缺陷病毒1(HIV-1)的进化过程[69]。在活体标本中发现了由主要HIV-1
蛋白酶基因和少数突变基因组成的复杂的病毒准种。在没有选择压力的情况下,
耐药突变基因的出现频率低于野生型基因。而抗药选择可以使这种突变基因成
为主要基因型。这种关于HIV-1病毒准种的分析可使研究者深入了解病毒进化
过程中病毒群落的复杂变化。但是这种病毒群落的分析是一项艰巨的任务,因
为低频率的突变很难通过测序检测到,亚克隆病毒PCR产物的测序结果会偏向
频率高的突变类型[70]。DHPLC等技术能提高检测少数耐药突变的能力,进而
促进HIV-1等传染病的治疗。
结论
由于准确,敏感的DHPLC突变检测技术的发展,新发现的基因突变数目
正在快速增长。DHPLC突变检测技术对人类疾病发生,易感性和治疗相关基因
突变以及连锁标志物的识别做出了重要的贡献。由于环境,生物学和进化因素
等不同选择机制的使用,新发现的遗传等位基因将越来越多。而发现与肿瘤基
因,病原微生物的病毒因素,以及特定药物靶点相关的新的低水平的基因突变
将是一项持久性的任务。采用DHPLC技术筛查基因突变,将会使这项任务更
好地进行,并促进高效的药物研究和开发。
致谢
在此我想感谢DrsJosephBreen,GeorgeHong,PhillipEastlake,Felix
Frueh和MarioNoyer-Weiner等对这篇文章的创作所付出的饱含思想性的努
力。我也想感谢AmandaMiller-Lindholm和CarlaShaw-Bruha对表1,2的制
作所给予的帮助。
参考文献
紧急求助各位大侠一个问题,基因测序的试剂盒,定性的,企业内部的参考盘,是否需要与国家的标准参考盘进行溯源,目前因为买不到国家的标准参考盘,不知道用什么方法进行溯源,希望大家多多给与意见,多谢各位~
DNA测序的测序原理:
DNA测序是指分析特定DNA片段的碱基序列,也就是腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)与鸟嘌呤的(G)排列方式。快速的DNA测序方法的出现极大地推动了生物学和医学的研究和发现。
其原理是化学试剂处理末段DNA片段,造成碱基的特异性切割,产生一组具有各种不同长度的DNA链的反应混合物,经凝胶电泳分离。化学切割反应:包括碱基的修饰修饰的碱基从其糖环上转移出去在失去碱基的糖环处DNA断裂。
另一个原理是利用一种DNA聚合酶来延伸结合在待定序列模板上的引物。直到掺入一种链终止核苷酸为止。每一次序列测定由一套四个单独的反应构成,每个反应含有所有四种脱氧核苷酸三磷酸(dNTP),并混入限量的一种不同的双脱氧核苷三磷酸(ddNTP)。由于ddNTP缺乏延伸所需要的3-OH基团,使延长的寡聚核苷酸选择性地在G、A、T或C处终止。终止点由反应中相应的双脱氧而定。每一种dNTPs和ddNTPs的相对浓度可以调整,使反应得到一组长几百至几千碱基的链终止产物。它们具有共同的起始点,但终止在不同的的核苷酸上,可通过高分辨率变性凝胶电泳分离大小不同的片段,凝胶处理后可用X-光胶片放射自显影或非同位素标记进行检测。


来源:高特佳投资/李新颜2015-09-2310:10
导读
2015年将成为我国精准医疗的元年,基因测序作为精准医疗的前端,行业面临爆发性的增长机遇,同时在实际操作中也面临一定的挑战。
第一部分:基因测序被关注的原因
测序技术和大数据分析能力的发展使得精准医学成为可能。精准医学是以患者的个人基因组信息为基础为病人量身设计出最佳治疗方案,和传统的循证医学相比,精准医学有望成为治疗效果最大化和副作用最小化的一门定制医疗模式。
1.1基因测序的价格以超摩尔定律下降,使得基因测序经济性推广成为可能
现在人类全基因组测序成本已经降到1000美元以下,未来这一数字还将继续下降;
2008年,二代测序技术NGS的出现和推广,让测序成本开始加速下降,并明显超过摩尔定律的预测。
基因测序技术成本迅速下降(每兆碱基)
1.2大数据分析工具的出现和进步,使得基因测序能够进入现实应用领域
针对大量基因组数据,大数据处理能力提升也为分析和解读基因数据提供支持,测序技术及大数据分析能力的不断提升将会推动精准医学进入快速增长的轨道。
1.3传统医学需要突破,精准医疗的政策风口助推基因测序发展
政策风口:2015年2月,习近平总书记批示科技部和国家卫生计生委,要求国家成立中国精准医学战略专家组。
2015年3月11日,科技部召开国家首次精准医学战略专家会议,并决定在2030年前在精准医疗领域投入600亿元。2015年1月,国家公布了产前筛查与诊断高通量测序试点单位,4月公布了肿瘤诊断与治疗高通量基因测序试点单位,表明了政府推动精准医疗发展的决心。
5月14日,国务院颁布《关于取消非行政许可审批事项的决定》,再取消49项非行政许可审批事项,不再保留“非行政许可审批”这一审批类别。与医药相关的包括:第31项:第三类医疗技术临床应用准入审批;第52项:国家食品药品监督管理总局负责的药品行政保护证书的核发。取消非行政许可审批,松绑第三类医疗技术临床应用,变事前审批为事中事后监管。预计未来,由省级卫生计生行政部门负责的第二类医疗技术实施准入审批也将逐步取消。轻审批,重监管的趋势明确。
第二部分:基因测序的特点及发展趋势
2.1、二代测序仍然是基因测序最主流的技术
目前基因测序技术已经发展到第三代(也有把纳米孔外切酶测序成为第四代)。
第一代DNA测序技术用的主要是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法。
第二代DNA测序技术(NGS)目前使用最为广泛,以Roche公司的454技术、Illumina公司的Solexa,Hiseq技术和Life公司的Solid技术为标志。
第三代DNA技术(TGS)以PacBio公司的SMRT和OxfordNanoporeTechnologies的纳米孔单分子测序技术为代表,测序过程无需进行PCR扩增。
二代测序在5-10年内仍然是基因测序的主流方法
二代测序技术凭借其高通量、低成本和高准确度取代第一代测序技术成为测序市场的主流。由于第三代DNA测序技术目前面临测序成本高和测序结果准确度相对较低的市场化瓶颈,因此TGS仪器大规模商业化仍然需要较长的时间。
NGS各环节对测序结果有重要影响:NGS测序流程包括样本收集、基因提取、文库构建、基因测序和数据分析,各环节的准确性对测序结果有重要影响,比对数据库的规模直接影响数据分析结果的准确性。
2.2、二代测序技术可能成为未来分子诊断的核心平台
二代测序技术兼具通量和准确度优势,有望引领分子诊断方法革新
常用的分子诊断技术包括聚合酶链式反应(PCR)、转录介导的扩增(TMA)、荧光原位杂交(FISH)、基因测序、以及基因芯片技术。
基因检测主要技术的细分市场增速概况(全球)
分子诊断仪器产品的研发,瓶颈不在于技术而在于政策对创新产品的鼓励,国家目前已开辟创新通道,受理审批周期也在大大的缩短。
不同发展阶段的分子诊断技术都有其特定的应用场景,随着NGS成本的下降,商业模式的丰富,传统的分子诊断方法将受到挑战。二代测序技术兼具通量和准确度优势,更为快速、低廉,极大地拓宽了基因测序的应用范围,尤其促进了分子诊断方法的革新。
第三部分:基因测序产业格局投资机会及挑战分析
3.1基因测序产业格局概览
基因测序市场的细分领域,包括了仪器、耗材、测序服务、数据处理、终端应用等多个方面,如下图所示。
上游:仪器试剂耗材
中游:测序服务(样品制备、检测和分析),信息分析(大数据存储、解读、共享)
下游:终端用户(应用场景)
3.2上游:仪器技术壁垒最高且形成寡头垄断格局,试剂耗材国内企业有一定机会
二代测序市场主流测序平台主要是四大家:Illumina、IonTorrent/LifeTechnologies(2014年被ThermoFisher收购)、454LifeSciences/Roche、PacificBiosciences。
Genomeweb2013度年全球测序仪器市场调查显示:Illumina占据了全球测序仪器市场71%的份额,Lifetechnologies则排名第二分得16%的市场份额,罗氏和PacBio则以10%和3%分列第三和第四位。前两家测序仪公司的全球市场占有率接近90%,基因测序仪行业已经形成寡头垄断的格局。
国内的三大家华大基因、达安基因、贝瑞和康和仪器供应商合作,已经在仪器和试剂层面均获得注册证。从盈利模式角度看,仪器未来不排除出现免费赠送,主要赢利点从试剂耗材及服务端获得,因此国内企业在试剂和服务端突破的可能性最大。
测序试剂、耗材、检测项目的开发,国内企业已经开始有所布局。
2014年7月,华大基因的新一代测序产品也获得了CFDA的批准,包括BGISEQ-100、BGISEQ-1000,以及胎儿染色体非整倍体(T21、T18和T13)检测试剂盒
2014年11月5日,国家食品药品监督管理总局批准了达安基因的基因测序仪和胎儿染色体非整倍体21三体、18三体和13三体检测试剂盒(半导体测序法)医疗器械注册。
2015年4月,贝瑞和康的基因测序仪(NextSeqCN500),以及胎儿染色体非整倍体(T13/T18/T21)检测试剂盒已通过国家食品药品监督管理总局(CFDA)的批准。NextSeqCN500基因测序仪是贝瑞和康与Illumina公司合作,为满足中国临床需求而设计制造的一款新型高通量的基因测序仪。
3.3中游:第三方测序服务机构和生物信息分析(数据分析),数据分析是目前行业发展的瓶颈环节
Illumina推出HiSeq系列高通量测序仪后,终端的数据分析成为行业发展的瓶颈。由于数据库是决定检测比对结果准确度和精确度的重要因素之一,因此是数据分析软件提供商主要的竞争壁垒之一。
测序服务——中国成为全球“测序工厂”
测序服务技术壁垒较低,主要面向科研市场,国家缺乏准入标准和质量控制规范,众多碎片化的小企业呈现疯狂生长的状态,仅提供一代测序服务的企业就有上百家。
在二代测序方面,2010年高通量测序平台中国拥有量仅次于美国,如今二者的差距很可能已经非常小。
全世界规模最大的基因组研究中心有多个在中国,其中华大基因(BGI)拥有世界上最多的新一代测序仪,产能约占全球的10%-20%(按illumina,Life等销总量计算)。
国内主要第三方基因测序机构覆盖的基因检测相关服务
测序服务本身壁垒较低,未来会出现超大规模的第三方检测工厂,出现基因测序界的富士康,实现规模效应。
科技服务仅约10亿元的外包市场,企业未来转型的出口是健康管理、医院、独立体检中心。因此有越来越多的科技服务测序公司在转向做第三方医学检验所。
临床测序有三个主体,第三方医学检验所、医院和体检中心,前者更加市场化,未来发展空间较大。
生物信息分析——挑战与机遇并存
基因测序所生成的原始数据并不能反映任何有价值的信息,必须通过专业人员进行分析和解读。现今的生物信息分析涉及的数据存储、解读、及共享是整个基因测序行业目前面临的最大难题,主要原因一是来自于数据量的庞大,二是源于数据的复杂性。
目前这一市场份额基数较小,蕴含着巨大的市场潜力。关注国内企业在这方面的的机会。
数据解读已被全球公认为是比测序还要重要的环节,分析和解读可能会成为中国企业的优势。但短期只能烧钱看不到回报,门槛是数据库,这是限制企业数量和规模的主要原因。
生物信息的所有权和应用领域,目前仍以科研为主,商业化应用瓶颈在于伦理和政策,但随着市场培育的加快,政府和保险的参与,基因组信息未来将归个人所有,政府负责建立数据中心和安全中心,授权个人对数据的使用权。
数据解读服务的市场格局将分为两大阵营:(1)、自行解读,有仪器研发和实力较强的大企业或科研机构会自己解读;(2)外包解读,中小企业、科研人员、医生个人则会交由第三方公司进行数据分析,因此市场对差异化的个性化的服务需求会增加,此类公司会越来越多。外包解读将催化产业不断涌现出各种创新服务模式。
至于数据库的建设,更看好通过市场化的竞争,由企业投资整合资源来积累数据的途径。
解读服务发展的催化剂在需求,落脚点在市场教育。数据库如果不用那就只是个数据库而已,没有附加价值。而医生和患者认识的基因越多,到更大平台去解读和挖掘数据的需求就越大,想要发现已知或未知疾病机理的欲望就越强烈,未来买单的将是保险公司。
3.4下游:二代基因测序的应用领域及其挑战
3.4.1未来市场容量
根据Illumina的测算,基因测序的市场规模有200亿美元左右。
其中,肿瘤学120亿美元、生命科学50亿美元(包括生命科学工具、复杂病症,农业基因以及影响因子和宏基因组)、生育和基因健康20亿美元(孕妇和新生儿童的检测,以及基因健康)、其他应用10亿美元。
目前,我国基因测序市场中,产前基因检测较为著名,如以国家规定的3500元/次的费用计,按照我国每年2000万左右的新生儿计算,产前基因检测市场能达到七百亿元人民币。
具体来看:
生育健康领域(应用相对成熟)
新生儿出生缺陷不仅给家庭带来了沉重的复单,而且已经成为严重影响我国经济发展和人口素质的重要问题。一些特定的遗传性疾病往往在出生一定时间后才会表现出明显症状,因此初生儿早期的基因筛查能够帮助尽快在医学上进行早期干预,达到及早发现、及早治疗的效果。目前新一代测序技术在生育健康领域主要应用在以下方面。
●无创产前检测(NIPT)
无创产前检测即胎儿染色体非整倍体无创基因检测,是一种基于大规模平行基因组测序技术的高科技检测手段。这种检测只需抽取孕妇少量静脉血,分离其中的胎儿游离DNA,通过高通量二代测序技术平台测序,并对测序结果进行生物信息学分析,即可判断胎儿是否换染色体非整倍体疾病。该技术是国际人类基因组学研究成果被成功孵化的应用技术之一,在欧美等发达国家普遍开展。该法操作简单,易行,安全,准确,孕妇早期就可进行,更具有无创的特点,不会导至流产、胎儿宫内感染等不良后果。
无创产前检查不仅可以筛查唐氏综合症(21三体),还可以筛查爱德华氏综合症(18三体)、帕特氏综合症(13三体)以及提示其他非整倍体型遗传病。
●胚胎植入前遗传学诊断(PGD)
也就是第三代“试管婴儿”,主要用于检查胚胎是否携带具有遗传缺陷的基因。它是在试管婴儿技术基础上出现的,精子卵子在体外结合形成受精卵并发育成胚胎后,在其植入子宫前进行基因检测,以便使试管婴儿避免一些遗传疾病。通过DNA检测技术对胚胎的染色体异常或者遗传性疾病进行诊断,选择无异常的胚胎植入母体,从根本上提高“试管婴儿”的妊娠成功率,降低自然流产率,提高妊娠质量,并且可大大提高出生后婴儿的质量。
●新生儿单基因遗传病检测
单基因病是指由一对等位基因控制的疾病或病理性状。常见的单基因病有短指症、地中海贫血症、白化病、苯丙酮尿症、色盲、血友病、C6PD(葡萄糖-6-磷酸脱氢酶)缺乏症等。已知的单基因病的致病基因及遗传方式大部分已经明确,早起单基因遗传病大部分通过染色体核型分析进行检测,染色体和性分析不可避免的缺点是分辨率低,对技术人员的经验依赖度高,对于微小缺失或者基因突变导至的遗传病不能进行检测。现在通过先进的二代高通量测序技术可以对上千种由于基因变异(基因突变、平衡异位、微缺失等)导至的遗传病进行检测,并且可以在早期通过胎儿的脱落细胞或者绒毛膜进行检测,在产前确认胎儿是否患有遗传病,为遗传病携带者或者已经生育遗传儿的家庭提供明确的遗传咨询和产前检测,从而做到优生,提高人口素质。
肿瘤的个体化治疗
肿瘤的发生发展中,基因的改变在其中居于中心地位,致癌基因的异常表达和抑癌基因失活,是肿瘤细胞无限制生长的分子基础。肿瘤临床表现多种多样,且发病率逐年升高,迄今尚无简单的治疗方法或使用单一药物能治愈所有的肿瘤。询证医学、诊疗规范化和个体化已经成为肿瘤治疗的公认趋向。
基因测序技术对于肿瘤个体化治疗主要有两方面应用:一是检测患者携带的肿瘤基因,二是检测肿瘤靶向药的靶点。
药物研发领域应用(CRO及医药公司)
新一代测序技术早期主要应用在肿瘤和传染病治疗领域,现在越来越多的使用在新兴生物药的开发和疫苗生产。目前药物研发部门使用的各种高通量技术,例如基因芯片、代谢组学建模、酵母双杂、蛋白质组学、高通量化学筛选、电子杂交定位,有望被新一代测序技术替代或作为补充。
个人DNA信息咨询
近几年兴起的直接面向用户(directtoconsumer)的个人DNA信息咨询产业其实是基因检测市场化产物,基本模式是利用互联网和快递寄送,将检测试剂盒送至用户手中,再由其将采集的唾液及送回公司,并从中提取用户的DNA,检测结果也可直接从网上查询获取。
3.4.2在应用领域主要趋势及挑战
业界认为,基因测序技术应用市场的先后顺序:无创产前筛查(NIPT)、癌症的个体化用药、癌症早筛、人人基因组、检测与筛查。
其中,植入前胚胎遗传学诊断(PGS/PGD)30亿市场、产前筛查与诊断(NIPT)160亿市场、肿瘤诊断与治疗千亿市场。此外,目前已经试点的方向,并不能说明技术已经很成熟,相反有些还很不成熟,需要通过很长时间的试点来积累样本和数据。未来可能的试点方向包括,免疫系统疾病、移植类疾病配型检测、传染病检测、公共卫生领域等都有可能。
生育健康领域
NIPT作为公认的第一个产业化项目,市场格局基本形成华大和贝瑞占90%的市场份额,包括108家试点单位及其他中小医院。
NIPT进入壁垒目前只是渠道
1、测序成本和客户体验,如果成本降到目前的1/10,或客户体验有颠覆性改变,都能形成替代,但短期还看不到;
2、测序服务上,主要是产科医院的渠道壁垒。
肿瘤诊断领域
目前的第二大应用,未来有可能成为第一大应用领域,个性化用药、靶向治疗、早诊是必然的发展方向,空间很大,但短期内还达不到无创的市场高度。
(1)肿瘤是多基因病,没有标准的用药方案,需要个性化治疗,并且机理尚未厘清,医院更倾向于自己做,不容易商业化。
(2)从基于组织到基于血液的肿瘤诊断,对医生而言需要有至少五年的市场培育过程,病种的增加则受制于样本量的积累。
(3)肿瘤的早诊,技术上,血液循环肿瘤细胞DNA(ctDNA)和循环肿瘤细胞(CTC)目前通过测序的检出率还很低,需求取决于人们保健意识的发展程度,未来可能成为健康保险的一个重要产品。
其他
其他应用领域主要的挑战:耳聋基因的筛查(检出率低,假阴性高)、罕见病筛查(无有效干预手段)、地中海贫血、靶向药物伴随诊断(尚无标准)。
2C端的应用的挑战,需要有一个较长的市场教育和科普过程,并且受限于伦理和法律。(生物谷Bioon.com)
他们是两家不同公司的测序平台1.原理illumina的Hiseq2000和454都是通过单序列的扩增放大信号,只是Hiseq2000中间有桥式扩增,可以两头测序。测序长度来讲,Hiseq2000一般为1X100和2X100的模式,而454平均500bp左右,最长700左右,测序准确度来讲Hiseq的测序准确度稍高一些,454由于在测序的过程每次是加一种碱基,所有如果是单碱基重复,比如AAAA,那么区分几个A的准确性就会下降。2.数据分析和应用方向数据分析相差不大,只是不同的软件,应用方面两者各有优势,Hiseq2000数据适应性更高。454一般是宏基因组种群丰度测序上应用更好一些,不过illumina也有MIseq代替。3.通量和价格HISEQ2000的通量要高一些,价格比454便宜很多。综合来讲454现在应用面比较窄了,所以在市场上现在也慢慢被代替掉了。现在耗材和试剂也很快就停服务了。不过Hiseq现在市场上也都2500居多了,并且现在也有新的的技术更新的3000和4000。说实话现在Hiseq2000也很少了。
佳学基因测序全部使用进口高质量试剂,以保证质量。
亚硫酸氢钠测序法(bisulfite genomic sequencing)
直接测序法是建立在MSP基础上进一步深入研究CpG岛各个位点甲基化情况的方法.重亚硫酸盐使DNA中未发生甲基化的胞嘧啶脱氨基转变成尿嘧啶,而甲基化的胞嘧啶保持不变,行PCR扩增(引物设计时尽量避免有CpG,以免受甲基化因素的影响)所需片段,则尿嘧啶全部转化成胸腺嘧啶.最后,对PCR产物进行测序,并且与未经处理的序列比较,判断是否CpG位点发生甲基化.此方法一种可靠性及精确度很高的方法,能明确目的片段中每一个CpG位点的甲基化状态.在寻找有意义的关键性CpG位点上,有其他方法无法比拟的优点.测序法以CpG岛两侧不含CpG点的一段序列为引物配对区,所以能够同时扩增出甲基化和非甲基化靶序列.它的不足是耗费时间和耗资过多,至少要测序10个以上的克隆才能获得可靠数据,需要大量的克隆及质粒提取测序,过程较为繁琐、昂贵.
第一部分 基因组DNA的提取.
这一步没有悬念,完全可以购买供细胞或组织使用的DNA提取试剂盒,如果实验室条件成熟,自己配试剂提取完全可以.DNA比较稳定,只要在操作中不要使用暴力,提出的基因组DNA应该是完整的.
此步重点在于DNA的纯度,即减少或避免RNA、蛋白的污染很重要.因此在提取过程中需使用蛋白酶K及RNA酶以去除两者.
使用两者的细节:
1:蛋白酶K可以使用灭菌双蒸水配制成20mg/ml;
2:RNA酶必须要配制成不含DNA酶的RNA酶,即在购买市售RNA酶后进行再处理,配制成10mg/ml.否则可能的后果是不仅没有RNA,连DNA也被消化了.两者均于-20度保存.
验证提取DNA的纯度的方法有二:
1:紫外分光光度计计算OD比值;
2:1%-1.5%的琼脂糖凝胶电泳.
我倾向于第二种方法,这种方法完全可以明确所提基因组DNA的纯度,并根据Marker的上样量估计其浓度,以用于下一步的修饰.
第二部分 亚硫酸氢钠修饰基因组DNA
如不特别指出,所用双蒸水(DDW)均经高压蒸汽灭菌.
1:将约2ugDNA于1.5mlEP管中使用DDW稀释至50ul;
2:加5.5ul新鲜配制的3M NaOH;
3: 42℃水浴30min;
水浴期间配制:
4:10mM对苯二酚(氢醌),加30ul至上述水浴后混合液中;(溶液变成淡黄色)
5: 3.6M亚硫酸氢钠(Sigma,S9000),配制方法:1.88g亚硫酸氢钠使用DDW稀释,并以3M NaOH滴定溶液至PH 5.0,最终体积为5ml.这么大浓度的亚硫酸氢钠很难溶,但加入NaOH后会慢慢溶解,需要有耐心.PH一定要准确为5.0.加520ul至上述水浴后溶液中.
6:EP管外裹以铝箔纸,避光,轻柔颠倒混匀溶液.
7:加200 ul 石蜡油,防止水分蒸发,限制氧化.
8:50℃避光水浴16h.
一般此步在4pm开始做,熟练的话不到5pm即可完成,水浴16h正好至次日8am以后收,时间上很合适.
这一步细节:
1:基因组DNA的量不需十分精确,宁多勿少,因为在以后纯化回收步骤中会有丢失,且此方法修饰最多可至4ug.
2:所有试剂均须新鲜配制,所以配液的技术要过关,既要快,又要精确.
3:亚硫酸氢钠溶液呈强酸性,一定用碱将PH调制5.0,否则PH不合适会影响后续纯化吸收.
4:水浴最好达16小时,虽可以短至8小时,但后者修饰会有不完全.
第三部分 修饰后DNA纯化回收
EP管如无特别说明均为高压蒸汽灭菌的.
1. 将移液器枪头伸入石蜡油层下,先轻轻加压使其中一小段石蜡油排出,然后吸取混合液至一洁净1.5mlEP管中.
2:以下使用Promega Wizard Cleanup DNA纯化回收系统(Promega,A7280)
1)70℃水浴预热DDW;配制80%异丙醇;
2)加1ml Promega’s Wizard DNA Clean-up resin,轻柔颠倒混匀,使DNA充分与树脂结合;
3)由于该试剂盒中仅配备针筒没有针栓,如果有真空负压吸引器,使用起来很方便;如果没有,需要自备3ml-5ml注射器.将注射器针筒与试剂盒提供的回收小柱紧密连接后,将上述混合物用移液器移至针筒内,用2ml以上的EP管放置小柱下接收废液.加针栓,轻轻加压,将液体挤出,此时可见小柱内有白色的树脂沉积.
4)将注射器与小柱分离后拔出针栓,再将针筒与小柱连接,向针筒内加入2ml 80%的异丙醇,插入针栓,轻轻加压,将异丙醇挤出.此为洗涤步骤.
5)将注射器与小柱分离,将小柱置于洁净1.5ml洁净EP管上,离心12000rpm,2min,以甩去残余异丙醇成分,使树脂干燥.此时,修饰后DNA处于与树脂结合状态.
6)将小柱取下置于另一洁净1.5mlEP管上,移液器加50ul预热好的DDW,室温放置5min.
7)离心12000rpm,20s,此为洗脱步骤,此时EP管内液体即为洗脱的修饰后DNA溶液,终体积为50ul.
3:加5.5ul 新鲜配制的3M NaOH,室温放置15min.
4:加33ul 10M乙酸铵,以中和NaOH,使溶液PH于7.0左右.
5:加4ul 10mg/ml糖原,此作为沉淀指示剂,因为其与乙醇混合后可产生沉淀,便于以后离心后辨别回收物的位置,以防在吸取残余乙醇时将回收物吸走.其实,加入这些糖原究竟能起多大作用,不好说.不过有国产糖原卖,包装不大,也很便宜,买来一用,算严格遵守文献的步骤吧.
6:加270ul 冰无水乙醇,置于-20度,过夜沉淀.有人为沉淀最短可至2小时,但我认为时间长些可能会更好.并且做到此步骤时,一般会到中午,如果样本多的话要到下午,不妨放置过夜,日程可以轻松些,顺便做些其他试验.如果想当天做完,没有问题,但我认为最好多沉淀些时候,至少6小时吧(这是经验,我做过最少6小时,也是可以的,再短就不敢发表意见了)
7:4度,12000rpm离心,30min,倒去上清液,收集沉淀.不必吸净.
8:加500ul 70%乙醇,不要将沉淀吹打起来,只要把乙醇加上即可.轻柔倾斜EP管,旋转一圈,再次离心,4度12000rpm,5min.离心后倒掉上清,再加同量乙醇,同样再做一遍.此为洗涤步骤,共2次.
9:倒掉上清,并常温简短离心后,将附壁乙醇离至EP管底,移液器小心将残余液体吸净,室温干燥5min,或沉淀由不透明变为半透明或透明时,加入20ul- 30ulDDW,溶解沉淀.至此,已完成了修饰后DNA的纯化回收,所得为修饰后DNA溶液,可用于此后的进一步实验.
10:-20℃保存DNA溶液.
此步细节:
1:在使用注射器时,一定要用力均匀且轻,如使用暴力,会将小柱内的薄膜挤破,失去作用.
2:乙酸铵、糖原不需新鲜配制,糖原配好后放在-20度保存,乙酸铵室温即可,因为这样浓度的乙酸铵非常难溶,一旦放在4度,取出用时也会有很多溶质析出.
3:异丙醇、70%乙醇都不需要新鲜配制,但如果用量大,现场配也很方便.
此步关键是在树脂与DNA的结合上,这就再次强调第二部分调亚硫酸钠PH值得重要性.因为树脂与DNA结合需要有一个适当的PH,如前一步没做好,此步树脂不能与DNA很好结合,将会带来灾难性后果,即DNA随着液体被挤出了,洗脱时实际已没有任何DNA了.
第四部分 修饰后DNA用于PCR
这一步也没有悬念.我主要谈一下这里面的几个比较棘手的问题:
1:引物问题:我感觉自己设计引物有相当的难度,我曾设计过几对引物,并且试验了一下,但以失败告终.如果时间充裕、作的又是比较新的基因文献不多,自己设计引物没有问题.如果不是这样,还是参考文献更好些.首先查阅SCI分值高的文献,然后是著名实验室的文献,如果国内有做的,更好了,可以直接联系咨询.查到序列后,一定要和Genbank中的序列进行比对,防止有印刷错误造成的个别碱基的差别.然后再到google上搜一下,看用的人多否,体系条件是否一样.用的人多、体系条件一样,表明可重复性比较强.我也是按此行事,算比较顺利.
2:Taq酶问题:有文献用高保真的金牌 Taq(Platinum),但我感觉只要体系正确、变性退火等条件合适,一般的热启动酶是可以的.我开始使用的是Takara的LA Taq,很好用,配有10x含mg++的LA缓冲液.有时候用没了,暂时以Takara 的普通Taq酶也可以.如何选择,可以根据自己的情况.初作者还是用好一点的酶.
3:PCR的条件:变性一般都选择95度,3min.其余我感觉还是根据文献,退火可以根据你的引物的退火温度在小范围内尝试.一般和文献报道差别不大.只是扩增片断特异性的问题.建议根据文献.
4:做PCR的EP管最好选择进口的,壁薄且厚度均匀,这可以保证温度的迅速变化可以及时传递给管内的反应液,使体系真正在所设定的温度下运行.
5:PCR仪:如果在某一个仪器上作出来了,最好一直用此仪器继续.不同的仪器“脾气”也不一样,但EP管必要和仪器内的插孔紧密结合方好,留有空隙,我认为会影响温度的传递.
这一部分有些啰嗦,只是个人一些不成熟经验.有疑问处,请大家指出,交流.今天先到这里,现写一些内容,比较费劲,总是不能一挥而就.望见谅.歇息一会准备写最后蓝白斑筛选克隆这一部分.
第五部分 PCR产物的凝胶回收
这一步比较简单,可以购买一个凝胶PCR产物回收试剂盒,国产的就很好、价格也合理,比如TIANGEN的产品(用过).把切下来的胶按说明书操作即可.
几个细节:
1:PCR产物进行琼脂糖凝胶电泳,要使用新配的电泳液.凝胶浓度1%-2%均可.
2:凝胶DNA回收时在300nm紫外灯下观察条带位置,切取目的片断所在位置的凝胶,尽量小,保证特异性.
3:紫外照射时间不能过长,否则对DNA有损伤.
4:回收后的DNA如不马上用就储存于-20度,在数月内是很稳定的.
第六部分 PCR产物与T载体的连接和转化、蓝白斑筛选
1:连接T载体(本实验使用的是Promega的试剂盒)
15ul体系
T-easy 1ul
Ligase 1ul
2xbuffer 7.5ul
DNA 5.5ul
4度,过夜.
2:连接产物的转化
1)-70度冰箱内取出感受态细菌,融化后置于冰上;
2)连接产物15ul 全部加入,至于冰上30分钟;
3)42度, 90秒钟;
4)冰上2分钟;
5)800ul LB培养基;
6)280rpm,37度,摇床45分钟(将管放水平了摇,保证菌液摇匀);
7)8000rpm,1分钟;在超净台内去上清,留100-150ul;
8)涂板:37度孵箱过夜;(板为含有氨苄青霉素的固体LB培养基)
先涂:X-gar 35ul
IPTG 25ul
后涂:混悬液
过夜后可见板上长出很多蓝色或白色斑点,取白色斑点,尤其是蓝色斑点周围的白色斑点,此处自联率较低.
3:取白斑,划种于新板上
新板:先涂:X-gar 35ul
IPTG 25ul
然后于板底划出分区,进行标记.根据需要,一般一板作50个克隆没有问题.
针头挑白斑划2道于板上相应区域内.
37度,孵箱过夜.
4:联系测序公司送测序.一般一个克隆在35-45元.
这一部分的细节:
1:涂板要均匀,保证Xgar和IPTG均匀分布在板面上;
2:不要让蓝白斑长得太满,否则选取克隆时容易一下挑2个.
体外诊断试剂(IVD)分类 123
小颜550sJo2021-07-21
属于的,基因测序属于体外诊断,一般的样本可检测唾液,血液,组织细胞,口腔上皮细胞等等,都是在体外进行PCR检测的,所以做基因检测所需要的试剂 和试剂盒都是体外诊断试剂
请问哪位老师了解,基因芯片和RNA-SEQ,对于想检测肿瘤细胞中的差异表达蛋白和通路,做哪种研究比较新,比较好?
麻烦问一下,RNA测序的原理和方法是什么?为什么不能直接测序,而要转成CDNA在测序呢?谢谢了~~
品牌分类
品牌问答

暂无品牌问答